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There has been extensive work in many different fields on how phenomena of interest (e.g. diseases, innova-
tion, product adoption) “diffuse” through a social network. As social networks increasingly become a fabric
of society, there is a need to make “optimal” decisions with respect to an observed model of diffusion. For
example, in epidemiology, officials want to find a set of k individuals in a social network which, if treated,
would minimize spread of a disease. In marketing, campaign managers try to identify a set of k customers
that, if given a free sample, would generate maximal “buzz” about the product. In this paper, we first show
that the well-known Generalized Annotated Program (GAP) paradigm can be used to express many existing
diffusion models. We then define a class of problems called Social Network Diffusion Optimization Problems
(SNDOPs). SNDOPs have four parts: (i) a diffusion model expressed as a GAP, (ii) an objective function we
want to optimize with respect to a given diffusion model, (iii) an integer k > 0 describing resources (e.g. med-
ication) that can be placed at nodes, (iv) a logical condition V C that governs which nodes can have a resource
(e.g. only children above the age of 5 can be treated with a given medication). We study the computational
complexity of SNDOPs and show both NP-completeness results as well as results on complexity of approxi-
mation. We then develop an exact and a heuristic algorithm to solve a large class of SNDOP problems and
show that our GREEDY-SNDOP algorithm achieves the best possible approximation ratio that a polynomial
algorithm can achieve (unless P = NP). We conclude with a prototype experimental implementation to
solve SNDOPs that looks at a real-world Wikipedia data set consisting of over 103,000 edges.
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1. INTRODUCTION
There is a rapid proliferation of different types of graph data in the world today.
These include social network data (FaceBook, Flickr, YouTube, etc.), cell phone net-
work data [N. Eagle and Lazer 2008] collected by virtually all cell phone vendors, email
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network data (such as those derived from the Enron corpus1), as well as information
on disease networks [Coelho et al. 2008; Anderson and May 1979]. In addition, the
World Wide Consortium’s RDF standard is also a graph-based standard for encoding
semantic information contained in web pages. There has been years of work on ana-
lyzing how various properties of nodes in such networks “diffuse” through the network
- different techniques have been invented in different academic disciplines including
economics [Jackson and Yariv 2005; Schelling 1978], infectious diseases [Coelho et al.
2008], sociology [Granovetter 1978] and computer science [Kempe et al. 2003].

Past work on diffusion has several limitations. (i) First, they largely assume that
a social network is nothing but a set of vertices and edges [Watts 1999; Cowan and
Jonard 2004; Rychtář and Stadler 2008]. In contrast, in this paper we adopt a richer
model where edges and vertices can both be labeled with properties. For instance, a po-
litical campaigner hoping to spread a positive message about a campaign needs to use
demographics (e.g. sex, age group, educational level, group affiliations, etc.) for target-
ing a political message — a “one size fits all” message will not work. In general, social
network researchers would say that they have several sociomatrices that can be used
for such applications. (ii) Second, past work on diffusion has no notion of “strength”
associated with edges. It may well be the case, in many applications, that the degree
of contact between two vertices (e.g. number of minutes person A spends on the cell
phone with person B) is a proxy for the strength of the relationship between A and
B, which in turn may have an impact of whether A can influence B or not. (iii) Third,
these past frameworks [Jackson and Yariv 2005; Schelling 1978; Coelho et al. 2008;
Granovetter 1978] usually reason about a single diffusion model, rather than develop
a framework for reasoning about a whole class of diffusion models.

Past diffusion models developed in a variety of fields ranging from business [Jackson
and Yariv 2005], economics [Schelling 1978], social science [Granovetter 1978], epi-
demiology [Coelho et al. 2008; Hethcote 1976; Anderson and May 1979], mobile phone
usage [Aral et al. 2009] show that diffusion models vary dramatically from application
to application. Three broad categories of diffusion models exist.

(1) Cascade models [Coelho et al. 2008; Hethcote 1976; Anderson and May 1979] are
widespread in epidemiology and assume that diffusions are largely based on con-
nectivity between nodes and are largely probabilistic.

(2) Tipping models do not use probabilities, but use various quantitative calculations
to determine when a vertex adopts (or is infected with) a diffusive property. They
are omnipresent in the social sciences and business [Centola 2010; Jackson and
Yariv 2005; Granovetter 1978]. Nobel-laureate Tom Schelling makes a similar
point that diffusions in many social science applications have a tipping point when
vertices become influenced by the number of neighbors and the strength of com-
mitment the neighbors may have to a certain position. No probabilities are present
in such models.

(3) Homophilic models are ones where similarity between users, rather than networks
effects, dominate diffusion. Similarity is usually calculated using some quantita-
tive model, often related to distance between vectors representing (values of) prop-
erties of nodes. For example, [Aral et al. 2009] tracks adoption of mobile applica-
tions in a study of over 27M users and shows that homophily - similarity between
users - is the most compelling diffusion model. There are no probabilities here,
just similarity measures. Another world famous diffusion model focused on mar-
keting [Watts and Peretti 2007] also is based on homophily and similarity of nodes’
intrinsic properties rather than a probability.

1http://www.cs.cmu.edu/̃ enron/
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Moreover, many models use a mix of the above forms. For instance, [Cha et al. 2009]
argues that the way photos are marked as “favorites” on Flickr is based on a mix of
cascading and homophilic behavior and to study the former, one must also account
for the latter. A similar combination of cascading and tipping is observed in [Zhang
2011]. Another strong indication of hybrid models in real social networks is the note-
worthy experimental study of [Centola 2011] which illustrates how a tipping model
combined with homphilic effects promote diffusion of health behaviors in an online
network. Thus, any general framework for expressing diffusions must have the capabil-
ity to express all three types of diffusion models, not just one or the other. In general, a
language to express diffusion models must be capable of expressing a wide variety of
quantitative methods encapsulated in the above.

In this paper, we first show that a class of the well-known Generalized Annotated
Program (GAP) paradigm [Kifer and Subrahmanian 1992; Kifer and Lozinskii 1992;
Thirunarayan and Kifer 1993] and their variants [Vennekens et al. 2004; Krajci et al.
2004; Lu 1996; Lu et al. 1993; Damasio et al. 1999] including Linear GAPs (introduced
here) form a convenient method to express many diffusion models. Though there is
no claim that they can express all possible useful diffusion models, they do express
all diffusion models (over 30) we have studied in the literature on a wide variety of
topics. Moreover, [Broecheler et al. 2010] provides an algorithm to automatically learn
such diffusion models from historical data, so users do not need to write their diffusion
models by themselves. This provides greater confidence that these diffusion models
are “correct.” Many other papers also focus on learning diffusion models automatically
for different types of applications — [Leskovec et al. 2007a] develop a probabilistic
learning algorithm, while [Backstrom et al. 2006] develop a method that takes both the
properties of vertices and the strength of relationships between vertices to learn such
a diffusion model automatically. We expect that in most real-world applications going
forward, diffusion models will be automatically learned rather than being programmed
by logic programmers.

Next, unlike most existing work in social networks which focus on learning diffusion
models, we focus on reasoning with diffusion models (expressed via GAPs) after the
diffusion models have been learned. In particular, we consider the problem of optimal
decision making in social networks which have associated diffusion models expressible
as Linear GAPs, though many of the results in the paper apply to arbitrary GAPs as
well. Here are two examples.

— (Q1) Cell phone plans. A cell phone company is promoting a new cell phone plan
- as a promotion, it is giving away k free plans to existing customers.2 Which set of
k people should they pick so as to maximize the number of plan adoptees predicted
by a cell phone plan adoption diffusion model they have learned from their past
promotions?

— (Q2) Medication distribution plan. A government combating a disease spread
by physical contact has limited stocks of free medication to give away. Based on a
diffusion model of how the disease spreads (e.g. kids might be more susceptible than
adults, those previously inoculated against the disease are safe, etc.), they want
to find a set of k people who (jointly) maximally spread the disease when infected
(so that they can provide immediate treatment to these k people in an attempt to

2Our framework allows us to add additional constraints — for instance, that plans can only be given to
customers satisfying certain conditions, e.g.customers deemed to be “good” according to various business
criteria.
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halt the disease’s spread).3 Notice that this query corresponds to only one of many
different policies that can be considered to deal with the disease spread scenario,
that is, we consider the case where a diffusion model expressing how an infected
person can infect other people is available and formulate a query that looks at the
maximum spread when k people are infected. Other queries, possibly leading to
different answers about who should be treated with medications, are possible.

Both these problems are instances of a class of queries that we call Social Network
Diffusion Optimization Problem (SNDOP) queries. They differ from queries studied
in the past in quantitative (both probabilistic and annotated) logic programming in
two fundamental ways: (i) They are specialized to operate on graph data where the
graph’s vertices and edges are labeled with properties and where the edges can have
associated weights, (ii) They find sets of vertices that optimize complex objective func-
tions that can be specified by the user. Neither of these has been studied before by any
kind of quantitative logic programming framework, though work on optimizing objec-
tive functions in the context of different types of semantics (minimal model and stable
model semantics) has been studied before [Leone et al. 2004]. And of course, constraint
logic programming [Apt 2003] has also extensively studied optimization issues as well
in logic programming - however, here, optimization and constraint solving is embedded
in the constraint logic program, whereas in our case, they are part of the query over an
annotated logic program. Moreover, most measures of importance in social networks
are centrality measures that study the influence of single vertices - [Borgatti and Ev-
erett 2006] provides an excellent overview of centrality measures. In contrast, a set
of k nodes each with low individual centrality may often wield greater influence on
a network than the set consisting of the k nodes with highest individual centrality -
intuitively, this is due to the fact that the k nodes with highest individual centrality
may overlap greatly in the nodes they influence, leading to an aggregate number of
influenced nodes that is lower than the one in the first case.

This paper is organized as follows. In Section 2, we provide an overview of GAPs
(past work), define a social network (SN for short), and explain how GAPs can repre-
sent some types of diffusion in SNs. Section 3 formally defines different types of social
network diffusion optimization problems and provides results on their computational
complexity and other properties. Section 4 shows how our framework can represent
several existing diffusion models for social networks including economics and epidemi-
ology. In Section 5 we present the exact SNDOP-Mon algorithm to answer SNDOP
queries under certain assumptions of monotonicity. We then develop a greedy algo-
rithm GREEDY-SNDOP and show that under certain conditions, it is guaranteed to be
an ( e

e−1 ) approximation algorithm for SNDOP queries — this is the best possible ap-
proximation guarantee. Last, but not least, we describe our prototype implementation
and experiments in Section 6. Specifically, we tested our GREEDY-SNDOP algorithm
on a real-world social network data set consisting of over 7000 nodes and over 103,000
edges from Wikipedia logs. We show that we solve social network diffusion optimiza-
tion problems over real data sets in acceptable times. We emphasize that much addi-
tional work is required on further enhancing scalability and that research on social
network diffusion optimization problems is at its very infancy. Finally, in Section 7, we
review related work.

3Again, our framework allows us to add additional constraints — for instance, that medication can only be
given to people satisfying certain conditions, e.g. be over a certain age, or be within a certain age range and
not have any conditions that are contra-indicators for the medication in question.
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2. TECHNICAL PRELIMINARIES
In this section, we first formalize social networks, then briefly review generalized an-
notated logic programs (GAPs) [Kifer and Subrahmanian 1992] and then describe how
GAPs can be used to represent concepts related to diffusion in SNs.

2.1. Social Networks Formalized
Throughout this paper, we assume the existence of two arbitrary but fixed disjoint sets
VP,EP of vertex and edge predicate symbols respectively. Each vertex predicate symbol
has arity 1 and each edge predicate symbol has arity 2.

Definition 2.1. A social network is a 5-tuple (V,E, ℓvert, ℓedge, w) where:

(1) V is a finite set whose elements are called vertices.
(2) E ⊆ V× V is a finite multi-set whose elements are called edges.
(3) ℓvert : V→ 2VP is a function, called vertex labeling function.
(4) ℓedge : E→ EP is a function, called edge labeling function. 4

(5) w : E→ [0, 1] is a function, called weight function.

We now present a brief example of an SN.

Example 2.2. Let us return to the cell phone example (query (Q1)). Figure 1 shows
a toy SN the cell phone company might use. Here, we might have VP = {male, female,
adopter, temp adopter, non adopter} denoting the sex and past adoption behavior of each
vertex; EP might be the set {phone, email, IM} denoting the types of interactions be-
tween vertices (phone call, email, and instant messaging respectively). The function
ℓvert is shown in Figure 1 by the shape (denoting past adoption status) and shad-
ing (male/female). The type of edges (bold for phone, dashed for email, dotted for IM)
is used to depict ℓedge. w(⟨v1, v2⟩) denotes the percentage of communications of type
ℓedge(⟨v1, v2⟩) initiated by v1 that were with v2 (measured either w.r.t. time or bytes).

It is important to note that our definition of social networks is much broader than
that used by several researchers [Anderson and May 1979; Coelho et al. 2008; Jackson
and Yariv 2005; Kempe et al. 2003] who often do not consider either ℓedge or ℓvert or
edge weights through the function w — it is well-known in marketing that intrinsic
properties of vertices (customers, patients) and the nature and strength of the rela-
tionships (edges) is critical for decision making in those fields.
Note. We assume that SNs satisfy various integrity constraints. In Example 2.2, it is
clear that ℓvert(v) should include at most one of male, female and at most one of adopter,
temp adopter,non adopter. We assume the existence of some integrity constraints to en-
sure this kind of semantic integrity – they can be written in any reasonable syntax
to express ICs – in the rest of this paper, we assume that social networks have asso-
ciated ICs and that they satisfy them. In our example, we will assume ICs ensuring
that a vertex can be marked with at most one of male, female and at most one of
adopter, temp adopter, non adopter.

2.2. Generalized Annotated Programs: A Recap
We now recapitulate the definition of generalized annotated logic programs from [Kifer
and Subrahmanian 1992]. We assume the existence of a set AVar of variable symbols
ranging over the unit real interval [0, 1] and a set F of function symbols each of which
has an associated arity. We start by defining annotations.

4Each edge e ∈ E is labeled by exactly one predicate symbol from EP. However, there can be multiple edges
between two vertices labeled with different predicate symbols.
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Fig. 1. Example cellular network.

Definition 2.3 (Annotation). Annotations are inductively defined as follows: (i) Any
member of [0, 1] ∪ AVar is an annotation.
(ii) If f ∈ F is an n-ary function symbol and t1, . . . , tn are annotations, then f(t1, . . . , tn)
is an annotation.

For instance, 0.5, 1, 0.3 and X are all annotations (here X is assumed to be a variable
in AVar). If +, ∗, / are all binary function symbols in F , then (X+1)∗0.5

0.3 is an annotation.5
We define a separate logical language whose constants are members of V and whose

predicate symbols consist of VP ∪ EP. We also assume the existence of a set V of vari-
able symbols ranging over the constants (vertices). No function symbols are present.
Terms and atoms are defined in the usual way (cf. [Lloyd 1987]). If A = p(t1, . . . , tn) is
an atom and p ∈ VP (resp. p ∈ EP), then A is called a vertex (resp. edge) atom. We will
use A to denote the set of all ground atoms (i.e., atoms where no variable occurs).

Definition 2.4 (annotated atom/GAP-rule/GAP). If A is an atom and µ is an anno-
tation, then A : µ is an annotated atom. If A is a vertex (resp. edge) atom, then A : µ
is also called vertex (resp. edge) annotated atom. If A0 : µ0, A1 : µ1, . . . , An : µn are
annotated atoms, then

A0 : µ0 ← A1 : µ1 ∧ . . . ∧ An : µn

is called a GAP rule (or simply rule). When n = 0, the above rule is called a fact.6 A
generalized annotated program (GAP) is a finite set of rules. An annotated atom (resp.
a rule, a GAP) is ground iff there are no occurrences of variables from either AVar or V
in it.

5Notice that in [Kifer and Subrahmanian 1992] annotations are not restricted to be in [0, 1] but any upper
semi-lattice is allowed – for the purpose of this paper we will restrict ourselves to the unit real interval.
6For notational simplicity, we will often write a fact A0 : µ0 ← simply as A0 : µ0, i.e. we drop the symbol←.
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Every social network S = (V,E, ℓvert, ℓedge, w) can be represented by the GAP
ΠS = {q(v) : 1 ← | v ∈ V ∧ q ∈ ℓvert(v)} ∪ {ep(v1, v2) : w(⟨v1, v2⟩) ← | ⟨v1, v2⟩ ∈
E ∧ ℓedge(⟨v1, v2⟩) = ep}.

Definition 2.5 (embedded social network). A social network S is said to be embed-
ded in a GAP Π iff ΠS ⊆ Π.

It is clear that all social networks can be represented as GAPs. When we augment ΠS
with other rules — such as rules describing how certain properties diffuse through the
social network, we get a GAP Π ⊇ ΠS that captures both the structure of the SN and
the diffusion principles. Here is a small example of such a GAP.

Example 2.6. The GAP Πcell might consist of ΠS using the social network of Fig-
ure 1 plus the GAP-rules:
(1) will adopt(V0) : 0.8×X + 0.2← adopter(V0) : 1 ∧ male(V0) : 1∧

IM(V0, V1) : 0.3 ∧ female(V1) : 1 ∧ will adopt(V1) : X.

(2) will adopt(V0) : 0.9×X + 0.1← adopter(V0) : 1 ∧ male(V0) : 1∧
IM(V0, V1) : 0.3 ∧ male(V1) : 1 ∧ will adopt(V1) : X.

(3) will adopt(V0) : 1 ← temp adopter(V0) : 1 ∧ male(V0) : 1 ∧ email(V1, V0) : 1∧ female(V1) :
1 ∧ will adopt(V1) : 1.

Rule (1) says that if V0 is a male adopter and V1 is female and the weight of V0’s
instant messages to V1 is 0.3 or more, and we previously thought that V1 would be an
adopter with confidence X, then we can infer that V0 will adopt the new plan with
confidence 0.8×X + 0.2. The other rules may be similarly read.

Suppose S is a social network and Π ⊇ ΠS is a GAP. In this case, we call the rules
in Π − ΠS diffusion rules. In this paper we consider a restricted class of GAPs: every
rule with a non-empty body has a vertex annotated atom in the head ([Kifer and Sub-
rahmanian 1992] allows any atom to appear in the head of a rule). Thus, edge atoms
can appear only in rule bodies or facts. This means that neither edge weights nor edge
labels change as the result of the diffusion. However, for the general case, it is possible
for them to change as a result of the diffusion process.

GAPs have a formal semantics that can be immediately used. An interpretation I
is any mapping from the set A of all grounds atoms to [0, 1]. The set I of all interpre-
tations can be partially ordered via the ordering: I1 ⪯ I2 iff for all ground atoms A,
I1(A) ≤ I2(A). I forms a complete lattice under the ⪯ ordering.

Definition 2.7 (satisfaction/entailment). An interpretation I satisfies a ground an-
notated atom A : µ, denoted I |= A : µ, iff I(A) ≥ µ. I satisfies a ground GAP-rule r
of the form AA0 ← AA1 ∧ . . . ∧ AAn (denoted I |= r) iff either (i) I satisfies AA0 or
(ii) there exists an 1 ≤ i ≤ n such that I does not satisfy AAi. I satisfies a non-ground
annotated atom (rule) iff I satisfies all ground instances of it. I satisfies a GAP iff I
satisfies all rules in it. A GAP Π entails an annotated atom AA, denoted Π |= AA, iff
every interpretation I that satisfies Π also satisfies AA.

As shown by [Kifer and Subrahmanian 1992], we can associate a fixpoint operator with
any GAP Π that maps interpretations to interpretations.

Definition 2.8. Suppose Π is any GAP and I an interpretation. The mapping TΠ

that maps interpretations to interpretations is defined as TΠ(I)(A) = sup{µ | A : µ ←
AA1 ∧ . . . ∧ AAn is a ground instance of a rule in Π and for all 1 ≤ i ≤ n, I |= AAi}.
[Kifer and Subrahmanian 1992] show that TΠ is monotonic (w.r.t. ⪯) and has a least
fixpoint lfp(TΠ). Moreover, they show that Π entails A : µ iff µ ≤ lfp(TΠ)(A) and
hence lfp(TΠ) precisely captures the ground atomic logical consequences of Π. They
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also define the iteration of TΠ as follows: TΠ ↑ 0 is the interpretation that assigns 0 to
all ground atoms; TΠ ↑ (i+ 1) = TΠ(TΠ ↑ i).

The semantics of GAPs requires that when there are multiple ground instances
of GAP-rules with the same head that “fire”, the highest annotation in any of these
ground rules is “chosen” according to the semantics of GAPs. This might seem restric-
tive and counter-intuitive to some, but it actually is the source of much power of GAPs.
For instance, one school of thought in probabilistic logic programming [Raedt et al.
2007] is that when multiple ground rules with the same head “fire”, the annotation
derived should be the “noisy-or” value derived by combining the values of the annota-
tions in the heads of firing rules. However, this is just one way of combining evidence
from multiple sources7 - many other triangular co-norms other than noisy-or can be
used and have been used in the literature [Bonissone 1987a]. However, such co-norms
can be expressed in our framework. If we have ground rules G1, G2, . . . , Gn, each hav-
ing the same atom in the head, and we want to combine evidence using a triangular
co-norm8 ⊕, and if Gi has the form:

A : µi ← Bodyi

then we can replace these rules with the rules:

A : ⊕({µi | i ∈ X}) ←
∧
i∈X

Bodyi

for any subset X ⊆ {1, . . . , n}. Moreover, as we have already remarked, many real-
world diffusion models are non-probabilistic, making assumptions about how annota-
tions should be combined harder to justify. However, the above discussion shows that
the GAP framework is capable of expressing such rules. Though there is clearly a
cost in terms of difficulty of expressing such methods to combine evidence generated
by multiple rules, algorithms already exist and have been implemented ([Broecheler
et al. 2010]) to learn GAP-based diffusion rules automatically from social network time
series data.

We will show (in Section 4) that many existing diffusion models for a variety of
phenomena can be expressed as a GAP Π ⊇ ΠS by adding some GAP-rules describing
the diffusion process to ΠS .

3. SOCIAL NETWORK DIFFUSION OPTIMIZATION PROBLEM (SNDOP) QUERIES
3.1. Basic SNDOP Queries
In this section, we develop a formal syntax and semantics for optimization in social
networks, taking advantage of the aforementioned embedding of SNs into GAPs. In
particular, we formally define SNDOP queries, examples of which have been infor-
mally introduced earlier as (Q1) and (Q2). We see from queries (Q1) and (Q2) that a
SNDOP query looks for a set V′ of vertices and has the following components: (i) an
objective function expressed via an aggregate operator, (ii) an integer k > 0, (iii) a set
of conditions that each vertex in V′ must satisfy, (iv) an “input” atom gI(V ), and (v)
an “output” atom gO(V ) (here gI and gO are vertex predicate symbols, whereas V is a
variable).

7Thus far, we have not come across any real-world diffusion models that use noisy-OR combinations or
indeed any triangular co-norm [Bonissone 1987a] other than the MAX used in this paper to combine values
generated by multiple rules having the same head. However should such diffusion models come to light, it
may be appropriate to explore the use of languages such as ProbLog to see if we can “do better” for those
selected diffusion models.
8When we apply ⊕ to a set {x1, . . . , xk}, we use ⊕({x1, . . . , xk}) as short-hand for ⊕(x1,⊕({x2, . . . , xn}))
which is well defined as all triangular co-norms are commutative and associative.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Social Network Diffusion Optimization Problems A:9

Aggregates. It is clear that in order to express queries like (Q1) and (Q2), we need
aggregate operators which are mappings agg : FM([0, 1]) → R+ (R+ is the set of non-
negative reals) where FM(X) denotes the set of all finite multisets that are subsets of
X. Relational DB aggregates like SUM,COUNT,AVG,MIN,MAX are all aggregate opera-
tors which can take a finite multiset of non-negative reals as input and return a single
non-negative real.
Vertex condition. A vertex condition is a set of vertex annotated atoms containing
exactly one variable (intuitively, such annotated atoms are conditions that must be
jointly satisfied by a vertex). More formally, a vertex condition V C is a set {p1(V ) :
µ1, . . . , pn(V ) : µn} where each pi ∈ VP, V ∈ V, and each µi ∈ [0, 1]. We use V C[V/v]
to denote the set of ground annotated atoms obtained from V C by replacing each oc-
currence of V with v, that is V C[V/v] = {p1(v) : µ1, . . . , pn(v) : µn}. A GAP Π entails
V C[V/v], denoted Π |= V C[V/v], iff Π |= pi(v) : µi for all 1 ≤ i ≤ n.

Thus, in our example, {male(V ) : 1, adopter(V ) : 1} is a vertex condition, but
{male(V ) : 1, email(V, V ′) : 1} is not. We are now ready to define a SNDOP query.

Definition 3.1 (SNDOP query). A SNDOP query is a 5-tuple
(agg, V C, k, gI(V ), gO(V )) where agg is an aggregate, V C is a vertex condition,
k > 0 is an integer, and gI(V ), gO(V ) are vertex atoms.

Let us consider again the medication distribution plan example. Suppose we have a
diffusion model expressing how a property healthy diffuses in a social network w.r.t.
a property immune (which would hold for a vertex when a medication is given to
it). An interesting query to pose would be to determine a set of at most k people
such that if these people were immune to the disease, then the number of healthy
people would be maximized. Such a query can be expressed with the SNDOP query
(SUM, ∅, k, immune(V ), healthy(V )). Here, the goal is to find a set V′ ⊆ V of vertices
such that |V′| ≤ k and the following is maximized:

SUM{lfp(TΠ∪{immune(v′):1 | v′∈V′})(healthy(v)) | v ∈ V}
Here, the SUM is applied to a multiset rather than a set. Note that in the query above
V C = ∅, meaning that the immune property can be assigned to any vertex of the
SN. However, other queries can be expressed where V C imposes restrictions on which
vertices can have property immune. As an example, V C = {adult(V )} would enforce
every vertex in V′ to be an adult person.

If we return to our cell phone example, we can set agg = SUM, V C = ∅, k = 3 (for
example), gI(V ) = will adopt(V ), and gO(V ) = will adopt(V ) (notice that in this case
gI(V ) = gO(V )). Here also, the goal is to find a set V′ ⊆ V of vertices such that |V′| ≤ 3
and the following is maximized:

SUM{lfp(TΠ∪{will adopt(v′):1 | v′∈V′})(will adopt(v)) | v ∈ V}
Here, the SUM is applied to a multiset rather than a set. Note that the diffusion
model’s impact is captured via the lfp(TΠ∪{will adopt(v′):1 | v′∈V′})(will adopt(v)) expres-
sion which, intuitively, tells us the confidence (according to the diffusion model) that
each vertex v will be an adopter. If we return to an extended version of our cell phone
example and we want to ensure that the vertices in V′ are “good” customers 9 then we
merely can set V C = {good(V ) : 1}. This query now asks us to find a set V′ of three
or less vertices — all of which are “good” customers of the company C — such that
SUM{lfp(TΠ∪{will adopt(v′):1 | v′∈V′})(will adopt(v)) | v ∈ V} is maximized.

9We can think of many ways a company may define “good” customers, e.g. those who regularly pay their bills
on time, those who buy a lot of services from the company, those who have stayed as customers for a long
time, etc. For our example, the specific definition of “good” is not relevant.
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Our framework also allows the vertex condition V C to have annotations other than
1. So in our cell phone example, the company could explicitly exclude anyone whose
“opinion” toward the company is negative. If opinion is quantified on a continuous [0, 1]
scale (such automated systems do exist [Subrahmanian and Recupero 2008]), then the
vertex condition might be restated as V C = {good(V ) : 1, negative opinion C(V ) : 0.7}
which says that the company wants to exclude anyone whose negativity about the
company exceeds 0.7 according to an opinion scoring engine such as [Subrahmanian
and Recupero 2008].

Definition 3.2 (pre-answer/value). Consider a SN S = (V,E, ℓvert, ℓedge, w) embed-
ded in a GAP Π. A pre-answer to the SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) w.r.t.
Π is any set V′ ⊆ V such that:

(1) |V′| ≤ k, and
(2) for all vertices v′′ ∈ V′, Π ∪ {gI(v′) : 1 | v′ ∈ V′} |= V C[V/v′′].

We use pre ans(Q,Π) to denote the set of all pre-answers to Q w.r.t. Π (whenever Π is
clear from the context we simply write pre ans(Q)).

The value of a pre-answer V′ is defined as follows:

value(V′) = agg({lfp(TΠ∪{gI(v′):1 | v′∈V′})(gO(v)) | v ∈ V})

where the aggregate is applied to a multi-set rather than a set. We also note that we
can define value as a mapping from interpretations to reals based on a SNDOP query.
We say value(I) = agg({I(gO(v)) | v ∈ V}).

If we return to our cell phone example, V′ is the set of vertices to which the company
is considering giving free plans. value(V′) is computed as follows.

(1) Find the least fixpoint of TΠ′
cell

where Π′cell is Πcell expanded with facts of the form
will adopt(v′) : 1 for each vertex v′ ∈ V′.

(2) For each vertex v ∈ V (the entire set of vertices, not just V′ now), we now find the
confidence assigned by the least fixpoint.

(3) Summing up these confidences gives us a measure of the expected number of plan
adoptees.

Definition 3.3 (answer). Suppose an SN S = (V,E, ℓvert, ℓedge, w) is embedded in a
GAP Π and Q = (agg, V C, k, gI(V ), gO(V )) is a SNDOP query. A pre-answer V′ is an
answer to the SNDOP query Q w.r.t. Π iff the SNDOP query has no other pre-answer
V′′ such that value(V′′) > value(V′).10

The answer set to SNDOP query Q w.r.t. Π, denoted ans(Q,Π), is the set of all answers
to Q w.r.t. Π (whenever Π is clear from the context we simply write ans(Q)).

It is important to note that an answer to an SNDOP query is a set of vertices that
jointly maximize the objective function specified. Thus, it is entirely possible that if
we set k = 1, we could have two answers {a1} and {a2} each of which ties for the
highest value. However, {a1, a2} may not be the answer that optimizes the objective
function when k = 2.

Example 3.4. For instance, suppose a1 and a2 are brothers with largely the same
connections. The sets {a1} and {a2} both have value 100 each and let us say these
constitute an answer (looking at one individual only) w.r.t. an objective function, e.g.
influencing voters in an election to vote for candidate X. As a1, a2 mostly influence the

10Throughout this paper, we only treat maximization problems - there is no loss of generality in this because
minimizing an objective function f is the same as maximizing −f .
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Table I. Special cases of SNDOPs

Type Special Case Reference
Special cases of Π Linear GAP Definition 3.6

Special cases of agg Monotonic Definition 3.7
Positive-linear Definition 3.8

Special cases of value Zero-starting Definition 3.10
A-priori V C Definition 3.12

same people, they may jointly be able to get only 110 people to vote for the candidate
because of the large overlap in their sphere of influence. However, now consider per-
sons a3, a4. Each of them can only influence 90 voters by themselves, but only 10 of
these voters “overlap”. Thus, they can jointly influence 80+80+10 = 170 voters to vote
for X. It would make more sense (all other things being equal) for the candidate’s party
to invest in {a3, a4}.

Example 3.5. Consider the GAP Πcell of Example 2.6 with the social network from
Figure 1 embedded and the SNDOP query Qcell = (SUM, ∅, 3, will adopt, will adopt).
The sets V′1 = {v15, v19, v6} and V′2 = {v15, v18, v6} are both pre-answers. In the case of
V′1, two applications of the TΠ operator yields a fixpoint where the vertex atoms formed
with will adopt and vertices in the set {v15, v19, v6, v12, v18, v7, v10} are annotated with
1. For V2, only one application of TΠ is required to reach a fixpoint. In the fixpoint,
vertex atoms formed with will adopt and vertices in the set {v15, v6, v12, v18, v7, v10} are
annotated with 1. As these are the only vertex atoms formed with will adopt that have
a non-zero annotation after reaching the fixed point, we know that value(V′1) = 7 and
value(V′2) = 6.

3.2. Special Cases of SNDOPs
In this section, we examine several special cases of SNDOPs that still allow us to
represent a wide variety of diffusion models. Table I illustrates the special cases
discussed in this section while Table II illustrates various properties we prove (and
the assumptions under which those properties are proved).

Special Cases of GAPs. First, we present a class of GAPs called linear GAPs. Intu-
itively, a GAP is linear if the annotations in the rule heads are linear functions and
the annotations in the body are variables. It is important to note that a wide variety
of diffusion models can be represented with GAPs that meet the requirements of this
special case. We formally define linear GAPs below.

Definition 3.6 (Linear GAP). A GAP-rule is linear iff it is of the form:

H0 : c0 + c1 ·X1 + · · ·+ cn ·Xn ← A1 : X1 ∧ . . . ∧ An : Xn

where each ci ∈ [0, 1], Σn
i=1ci ∈ [0, 1], and each Xj is a variable in AVar. A GAP is linear

iff each rule in it is linear.

Note that linear GAPs allow for a wide variety of models to be expressed. Section 4
will show that several well-known network diffusion models can be embedded into our
framework. Diffusion Models 4.2 and 4.4, reported in Section 4, are linear GAPs while
Diffusion Models 4.1 and 4.3 are not.
Special Aggregates. We define two types of aggregates: monotonic aggregates and
positive-linear aggregates.

To define monotonicity, we first define a partial order ⊑ on multi-sets of numbers as
follows: given two multi-sets of numbers X1 and X2, we write X1 ⊑ X2 iff there exists
an injective mapping β : X1 → X2 such that ∀x1 ∈ X1, x1 ≤ β(x1).
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Definition 3.7 (Monotonic Aggregate). An aggregate agg is monotonic iff when-
ever X1 ⊑ X2, it is the case that agg(X1) ≤ agg(X2).

Definition 3.8 (Positive-Linear Aggregate). An aggregate agg is positive-linear iff
it is defined as follows: agg(X) = c0 + Σxi∈X ci · xi, where X is a finite multiset and
ci ≥ 0 for all i > 0.

In the previous definition, note that c0 can be positive, negative, or 0. Thus, we only
require that the coefficients associated with the elements of the multi-set be positive
– we allow for an additive constant to be negative. One obvious example of a positive-
linear aggregate is SUM. Moreover, any positive weighted sum will also meet these
requirements.

PROPOSITION 3.9. If agg is a positive-linear aggregate, then it is a monotonic ag-
gregate.

Special cases of the query. We now describe two special cases of the query:
zero-starting and a-priori VC SNDOP queries. Intuitively, zero-starting means that
value(∅) = 0.

Definition 3.10 (Zero-starting). An SNDOP query is zero-starting w.r.t. a given
social network S and a GAP Π ⊇ ΠS iff value(∅) = 0.

Note that the function value is uniquely defined by a social network, a SNDOP query,
and a diffusion model Π and hence the above definition is well defined.

The following result states that if an SNDOP query Q with a positive-linear aggre-
gate is not zero-starting, then we can always modify it into an “equivalent” SNDOP
query Q′ (i.e. ans(Q) = ans(Q′)) which is zero-starting and still maintains a positive-
linear aggregate.

PROPOSITION 3.11. Let Q = (agg, V C, k, gI(V ), gO(V )) be a SNDOP query which
is not zero-starting w.r.t. a social network S and a GAP Π ⊇ ΠS , and where agg is
positive-linear. Let agg′(X) = agg(X) − value(∅). Then, Q′ = (agg′, V C, k, gI(V ), gO(V ))
is a SNDOP query which is zero-starting w.r.t. S and Π, ans(Q) = ans(Q′), and agg′ is
positive-linear.

Recall that in order to check if a set of vertices V′ is a pre-answer, we need to check
for all vertices v′′ ∈ V′ if Π ∪ {gI(v′) : 1 | v′ ∈ V′} |= V C[V/v′′] (see condition (2) of
Definition 3.2). Intuitively, a SNDOP query has an A-Priori VC (w.r.t. a given social
network S and a GAP Π ⊇ ΠS ) when we can check this condition by looking only at the
original social network S (thereby disregarding Π), that is we can check for all vertices
v′′ ∈ V′ if ΠS ∪ {gI(v′′) : 1} |= V C[V/v′′]. We formally define this notion below.

Definition 3.12 (A-Priori VC). A SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) has
an A-Priori VC w.r.t. a given social network S = (V,E, ℓvert, ℓedge, w) and a GAP Π ⊇
ΠS iff for each V′ ⊆ V the following holds: for each v′′ ∈ V′, Π ∪ {gI(v′) : 1 | v′ ∈ V′} |=
V C[V/v′′] iff ΠS ∪ {gI(v′′) : 1} |= V C[V/v′′].

If, in the cell phone example, we require that the free cell phones are given to “good”
vertices, then query (Q1) is a-priori VC because being “good” may be defined statically
and is not determined by the diffusion process. Likewise, if we consider our medical
example, in the case of an a-priori VC query (Q2) saying that an individual below 5
should not get the medicine, this boils down to a static labeling of each node’s age
(below 5 or not) which is not affected by the diffusion process.
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Table II. Properties that can be proven given certain assumptions

Property Assumptions
Monotonicity of value (Lemma 3.13) Monotonicity of agg
Multiset {V′ ⊆ V|V′ is a pre-answer} is a uniform matroid A-priori VC
(Lemma 3.14)

Submodularity of value (Theorem 3.15)

Linear GAP
Positive-linear agg
A-priori VC

Table III. How the various properties are leveraged in the Algorithms

Algorithm Property
Exact algorithm with pruning (Section 5.2) Monotonicity of value

Approx. Ratio on Greedy Algorithm (Section 5.3) Submodularity
Zero-starting
Uniform matroid for the pre-answers

3.3. Properties of SNDOPs
In this section, we will prove several useful properties of SNDOPs that use various
combinations of the assumptions presented in the previous section. Later, we will
leverage some of these properties in our algorithms. Table II summarizes the differ-
ent properties that we prove in this section (as well as what assumptions we make
to prove these properties). Table III shows how these properties are leveraged in the
algorithms that we will present later in the paper.

We say that function value is monotonic iff V1 ⊆ V2 implies value(V1) ≤ value(V2)
for any two sets of vertices V1 and V2. The first property we show is that the value
function is monotonic if agg is monotonic.

LEMMA 3.13. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, and a GAP Π ⊇ ΠS , if agg is monotonic (Definition 3.7), then value (defined as
per Q and Π) is monotonic.

Before introducing the next result we recall the definitions of matroid and uniform
matroid. A matroid is a pair (X, I) where X is a finite set and I is a collection of subsets
of X (called “independent”), satisfying two axioms:

(1) B ∈ I, A ⊂ B ⇒ A ∈ I.
(2) A,B ∈ I, |A| < |B| ⇒ ∃x ∈ B −A s.t. A ∪ {x} ∈ I.

A uniform matroid is a matroid such that independent sets are all sets of size at most
k for some k ≥ 1.

Next, we show that the set of pre-answers is a uniform matroid in the special case
of an a-priori VC query.

LEMMA 3.14. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, and a GAP Π ⊇ ΠS , if Q is a-priori VC w.r.t. S and Π, then the set of pre-answers
is a uniform matroid.

As we will see in Section 5, the above lemma (along with other properties, see The-
orem 5.8) enables us to define a greedy approximation algorithm to solve SNDOP
queries that achieves the best possible approximation ratio that a polynomial algo-
rithm can achieve (unless P = NP).

An important property in social networks is submodularity whose relationship to the
spread of phenomena in social networks has been extensively studied [Mossel and Roch
2007; Kleinberg 2008; Leskovec et al. 2007a]. If X is a set, then a function f : 2X → R
is submodular iff whenever X1 ⊆ X2 ⊆ X and x ∈ X − X2, f(X1 ∪ {x}) − f(X1) ≥
f(X2 ∪ {x})−f(X2). The following result states that the value function associated with

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



A:14 P. Shakarian, M. Broecheler, V.S. Subrahmanian, C. Molinaro

v1 

v2 v3 

v4 

v5 

v7 v6 

Fig. 2. Social network corresponding with Example 3.16 concerning disease spread.

a linear GAP and an a-priori VC SNDOP query whose aggregate is positive-linear is
guaranteed to be submodular.

THEOREM 3.15. Given an SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social
network S, and a GAP Π ⊇ ΠS , if the following criteria are met:

— Π is a linear GAP,
— Q is a-priori VC, and
— agg is positive-linear,

then value (defined as per Q and Π) is sub-modular.
In other words, for Vcond ≡ {v′|v′ ∈ V and (ΠS ∪ {gI(v′) : 1} |= V C[V/v′])}, if V1 ⊆

V2 ⊆ Vcond and v ∈ Vcond − V2, then the following holds:

value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2)

Proof Sketch: Consider a linear polynomial with a variable for each vertex in the set
of vertices that meet the a-priori V C, where setting the variable to 1 corresponds to the
vertex being picked and setting it to 0 indicates otherwise. For any subset of vertices
meeting the a-priori V C, there is an associated polynomial of this form such that when
the variables corresponding to the vertices are set to 1 (and the rest set to 0), the answer
is equal to the corresponding value for that set. For a sets V1,V2 and vertex v (as per the
statement), we show that submodualirty holds by manipulating such polynomials.

Example 3.16. We now show an example of a SNDOP query and a non-linear GAP
for which the value function is not sub-modular. Figure 2 shows a social network with
one edge predicate, e – all edges are weighted with 1. Nodes in the network are either
susceptible to the disease (circles) or carriers (diamonds) - the associated predicates are
suc and car respectively. Additionally, we have the predicates inf, exp denoting vertices
that have been infected by or exposed to the disease. No vertex is initially exposed or
infected in the social network of Figure 2.

Let Πdisease be the embedding of this network plus the following diffusion rules.

exp(V ) : 1← inf(V ) : 1

exp(V ) : 1← e(V ′, V ) : 1 ∧ inf(V ′) : 1 ∧ suc(V ) : 1

inf(V ) :

⌊ ∑
i Ii∑
i Ei

⌋
← exp(V ) : 1 ∧

∧
Vi|(Vi,V )∈E

(edge(Vi, V ) : Ei ∧ inf(Vi) : Ii)

Intuitively, the second rule says that a vertex becomes exposed if that vertex is sus-
ceptible and it has at least one incoming neighbor that is infected. The third rule states
that a vertex becomes infected if it is exposed and all its incoming neighbors are in-
fected.

Consider the function value defined as per the SNDOP query
(SUM, ∅, 2, inf(V ), inf(V )) and Πdisease. Obviously, as the GAP is not linear, it
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does not meet the requirements of Theorem 3.15 to prove submodularity. We can
actually show through counterexample, that this SNDOP query is not submodular.
Consider the following:

value({v1, v5})− value({v1}) = 1

(here value({v1, v5}) = 2 and value({v1}) = 1) and

value({v1, v7, v5})− value({v1, v7}) = 4

(here value({v1, v7, v5}) = 7 and value({v1, v7}) = 3).
This shows a clear violation of submodularity.
As an example of how the values above are determined, consider value({v1, v5}).

Notice that the third rule of Πdisease is the only one that can be used to propagate the
inf property, but in order for a vertex V to get infected using this rule, V has to be
exposed first (and all its incoming neighbors have to be infected). When v1 and v5 are
assumed to be infected, v4 gets exposed (v1 and v5 get exposed as well because of the
first rule). At this point, the exposed property cannot be propagated any further, and
no vertex can get infected because no vertex is both exposed and has all its incoming
neighbors infected (notice that v4 cannot get infected because v6 is not infected). Thus,
value({v1, v5}) = 2.

3.4. The Complexity of SNDOP Queries
We now study the complexity of answering an SNDOP query. First, we show that
SNDOP query answering is NP-hard by a reduction from max k-cover [Feige 1998].
We show that the problem is NP-hard even when many of the special cases hold.

THEOREM 3.17. Finding an answer to an SNDOP query Q =
(agg, V C, k, gI(V ), gO(V )) (w.r.t. a social network S and a GAP Π ⊇ ΠS ) is NP-hard
(even if Π is a linear GAP, V C = ∅, agg = SUM and value is zero-starting).

Proof Sketch: The known NP-hard problem of MAX-K-COVER [Feige 1998] is defined
as follows.
INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . , Hmax}, and
positive integer K.
OUTPUT: Less than or equal to K subsets from H such that the union of the subsets
covers a maximal number of elements in S.
We show that MAX-K-COVER can be embedded into a social network and that
the corresponding SNDOP query gives an optimal answer to MAX-K-COVER. The
embedding is done by creating a social network resembling a bipartite graph, where
vertices represent either the elements or the subsets from the input of MAX-K-COVER.
For every vertex pair representing a set and an element of that set, there is an edge
from the set vertex to the element vertex. A single vertex and edge predicate are
used - vertex and edge. A single non-ground diffusion rule is added to the GAP:
vertex(V ) : X ← vertex(V ′) : X ∧ edge(V ′, V ) : 1. The aggregate is simply the sum
of the annotations associated with the vertex atoms. We show that the picked vertices
that maximize the aggregate correspond with picked subsets that maximize output
of the problem. Also, as we do not use V C, the GAP is linear, and the aggregate is
positive-linear, we know that the value function is submodular.

Under some conditions, the decision problem for SNDOP queries is also in NP.

THEOREM 3.18. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, a GAP Π ⊇ ΠS , and a real number target, the problem of checking whether
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there exists a pre-answer V′ s.t. value(V′) ≥ target is in NP under the assumptions that
agg and the functions in F are polynomially computable, and Π is ground.

Most common aggregate functions like SUM, AVERAGE, Weighted average, MIN,
MAX, COUNT are all polynomially computable. Moreover, the assumption that the
functions corresponding to the function symbols in F (i.e. the function symbols that can
appear in the annotations of a GAP) are polynomially computable is also reasonable.

Later in this paper, we shall address the problem of answering a SNDOP query
using an approximation algorithm. We re-state the definition of approximation below
(see [Garey and Johnson 1979]).

Definition 3.19 (Approximation). Consider a maximization problem and let OPT (I)
denote the value of an optimal solution for an instance I of the problem. An α-
approximation algorithm A is an algorithm that for any instance I finds a candidate
solution such that

OPT (I) ≤ α ·A(I)
where A(I) denotes the value of the solution found by A for instance I.

Based on the above definition, we shall say that V′ is a 1
α -approximation to an

SNDOP query if value(Vopt) ≤ α · value(V′) (where Vopt is an answer to the SNDOP
query). Likewise, the algorithm that produces V′ in this case is an α-approximation
algorithm. We note that due to the nature of the reduction from MAX-K-COVER that
we used to prove NP-hardness, we can now show that unless P = NP, there is no
PTIME-approximation of the SNDOP query answering problem that can guarantee
that the approximate answer is better than 0.63 of the optimal value. This gives us
an idea of the limits of approximation possible for a SNDOP query with a polynomial-
time algorithm. Later, we will develop a greedy algorithm that precisely matches this
approximation ratio.

THEOREM 3.20. Answering a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) (w.r.t. a
social network S and a GAP Π ⊇ ΠS) cannot be approximated in PTIME within a ratio
of e−1

e + ϵ for some ϵ > 0 (where e is the inverse of the natural log) unless P = NP – even
if Π is a linear GAP, V C = ∅, agg = SUM and value is zero-starting.

In other words, the previous theorem says that there is no polynomial-time algo-
rithm that can approximate value within a factor of about 0.63 under standard as-
sumptions.

3.5. Counting Complexity of SNDOP-Queries
In this section, we ask the question: how many answers are there to a SNDOP query
(agg, V C, k, gI(V ), gO(V ))? In the case of the cell phone example, this corresponds to
asking “How many sets ANS of people are there in the the network such that ANS
has k or fewer people and ANS optimizes the aggregate, subject to the vertex condition
V C?” If there are m such sets ANS1, . . . , ANSm, this means the cell phone company can
give the free cell phone plan to either all members of ANS1 or to all members of ANS2,
and so forth. The “counting complexity” problem of determining m is is #P -complete.

THEOREM 3.21. Counting the number of answers to a SNDOP query Q (w.r.t. a
social network S and a GAP Π ⊇ ΠS ) is #P-complete.

3.6. The SNDOP-ALL Problem
Suppose the cell phone company wants to identify all the “most influential” users, that
is, the users that when considered individually (and not as a set) yield a maximum
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expected number of plan adoptees. This might be computed by taking the union of all
the answers to query (Q1) with k = 1. For instance, if we consider the hypothetical
example of the political candidate (Example 3.4), the candidate may also want to know
all the top influencers when considered individually. In this case, vertices a1, a2 would
emerge in the answer to a SNDOP-ALL query defined below.

Although the counting version of the query is #P -hard, finding the union of all an-
swers to a SNDOP query is no harder than a SNDOP query (w.r.t. polynomial-time
Turing reductions). We shall refer to this problem as SNDOP-ALL - and it reduces
both to and from a regular SNDOP query (w.r.t. polynomial-time Turing reductions).

We start with the following result, showing that we can answer a SNDOP query in
PTIME with an oracle to SNDOP-ALL.

THEOREM 3.22. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, and a GAP Π ⊇ ΠS), there exists a polynomial-time algorithm with an oracle
to SNDOP-ALL which answers Q.

Proof Sketch: We embed a SNDOP query in a SNDOP-ALL query via the following
informal algorithm (FIND-SET) that takes an instance of SNDOP-ALL (Q) and some
vertex set V ∗, |V ∗| ≤ k.

(1) If |V ∗| = k, return V ∗

(2) Else, solve SNDOP-ALL(V ∗), returning set V ′′.
(a) If V ′′ − V ∗ ≡ ∅, return V ∗

(b) Else, pick v ∈ V ′′ − V ∗ and return FIND-SET(Q,V ∗ ∪ v)

The theorem below shows that SNDOP-ALL can be answered in PTIME with an
oracle to a SNDOP query.

THEOREM 3.23. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, and a GAP Π ⊇ ΠS ), finding

∪
V′∈ans(Q) V′ reduces to |V| + 1 SNDOP queries,

where V is the set of vertices of S.

Proof Sketch: Using an oracle that correctly answers SNDOP queries, we can answer
a SNDOP-ALL query by setting up |V| SNDOP queries as follows:

— Let kall be the k value for the SNDOP-ALL query and for each SNDOP query i, let ki
be the k for that query. For each query i, set ki = kall − 1.

— Number each element of vi ∈ V such that gI(vi) and V C(vi) are true. For the ith
SNDOP query, let vi be the corresponding element of V

— Let Πi refer to the GAP associated with the ith SNDOP query and Πall be the program
for SNDOP-ALL. For each program Πi, add fact gI(vi) : 1

— For each SNDOP query i, the remainder of the input is the same as for SNDOP-ALL.

After the construction, do the following:

(1) We shall refer to a SNDOP query that has the same input as SNDOP-ALL as the
“primary query.” Let V′ans

(pri) be an answer to this query and value(V′ans
(pri)

) be the
associated value.

(2) For each SNDOP query i, let V′ans
(i) be an answer and value(V′ans

(i)
) be the associ-

ated value.
(3) Let V′′, the solution to SNDOP-ALL be initialized as ∅.
(4) For each SNDOP query i, if value(V′ans

(i)
) = value(V′ans

(pri)
), then add vertex vi to

V′′.
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4. APPLYING SNDOPS TO REAL DIFFUSION PROBLEMS
In this section, we show how SNDOPs can be applied to real-word diffusion problems.
Most diffusion models in the literature fall into one of three categories – tipping mod-
els (Section 4.1), where a given vertex adopts a behavior based on the ratio of how
many of its neighbors previously adopted the behavior, cascade models (Section 4.2),
where a property passes from vertex to vertex solely based on the strength of the re-
lationship between the vertices, and homophilic models (Section 4.3), where vertices
with similar properties tend to adopt the same behavior – irrespective (or in addition
to) of network relationships. None of these approaches solves SNDOP queries — they
merely specify diffusion models rather than performing the kinds of optimizations that
we perform in SNDOP queries.

4.1. Tipping Diffusion Models
Tipping models [Centola 2010; Schelling 1978; Granovetter 1978] have been studied
extensively in economics and sociology to understand diffusion phenomena. In tipping
models, a vertex changes a property based on the cumulative effect of its neighbors. In
this section, we present the tipping model of Jackon-Yariv [Jackson and Yariv 2005],
which generalizes many existing tipping models.

The Jackson-Yariv Diffusion Model [Jackson and Yariv 2005]. In this frame-
work, the social network is just an undirected graph G′ = (V′,E′) consisting of a set
of agents (e.g. people). Each agent has a default behavior (A) and a new behavior (B).
Suppose di denotes the degree of a vertex vi. [Jackson and Yariv 2005] use a func-
tion γ : {0, . . . , |V′| − 1} → [0, 1] to describe how the number of neighbors of v affects
the benefits to v for adopting behavior B. For instance, γ(3) specifies the benefits (in
adopting behavior B) that accrue to an arbitrary vertex v ∈ V′ that has three neigh-
bors. Let πi denote the fraction of neighbors of vi that have adopted behavior B. Let
constants bi and ρi be the agent-specific benefit and cost, respectively, for vertex vi to
adopt behavior B. [Jackson and Yariv 2005] state that node vi switches to behavior B
iff bi

ρi
· γ(di) · πi ≥ 1.

Returning to our cell-phone example, one could potentially use this model to describe
the spread of the new plan. In this case, behavior A would be adherence to the current
plan the user subscribes to, while B would be the use of the new plan. The associated
SNDOP query would find a set of nodes which, if given a free plan, would jointly maxi-
mize the expected number of adoptees of the plan. Cost and benefit could be computed
from factors such as income, time invested in switching plans, etc. We show how the
model of [Jackson and Yariv 2005] can be expressed via GAPs.

DIFFUSION MODEL 4.1 (JACKSON-YARIV MODEL). Given a Jackson-Yariv model
consisting of G′ = (V′,E′), we can set up a social network S = (V′,E′′, ℓvert, ℓedge, w)
as follows. We define E′′ = {(x, y), (y, x) | (x, y) ∈ E′}. We have a single edge predicate
symbol edge which is assigned by ℓedge to every edge in E′′, and w assigns 1 to all edges
in E′′. Our associated GAP ΠJY now consists of ΠS plus one rule of the following form
for each vertex vi:

B(vi) :

 bi
ρi
· γ

∑
j

Ej

 · ∑j Xj∑
j Ej

← ∧
vj |⟨vj ,vi⟩∈E′′

(edge(vj , vi) : Ej ∧B(vj) : Xj)

It is easy to see that this rule (when applied in conjunction with ΠS for a social
network S) precisely encodes the Jackson-Yariv semantics.
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Fig. 3. Social network of individuals sharing photographs.

We notice right away that the above GAP is not linear. However, if we eliminate the
floor function and impose certain restrictions on the coefficients appearing in the head
of the rules, then we obtain a linear GAP that represents a variant of this model where
the annotation would represent a “confidence” that an agent adopts behavior B. The
idea of the confidence of an agent represented by a vertex adopting a certain behavior
as a function of his adopting neighbors is suggested in the experiment of [Centola 2010]
where he observed that the preference for a new behavior increases monotonically with
the number of incoming neighbors who previously adopted said behavior. Such a linear
GAP model is presented below.

DIFFUSION MODEL 4.2 (LINEAR JACKSON-YARIV MODEL). For each vertex vi let

ci =
bi
ρi
· γ

 ∑
vj |⟨vj ,vi⟩∈E′′

w(⟨vj , vi⟩)

 · 1∑
vj |⟨vj ,vi⟩∈E′′ w(⟨vj , vi⟩)

If for each vertex vi, ci ∈ [0, 1] and |{vj | ⟨vj , vi⟩ ∈ E′′}| × ci ≤ 1, then we can derive a
linear GAP for the Jackson-Yariv model that consists of one rule of the following form
for each vertex vi

B(vi) : ci
∑
j

Xj ←
∧

vj |⟨vj ,vi⟩∈E′′

B(vj) : Xj

Notice that the above rule is similar to the one in Diffusion Model 4.1, but the floor
function has been dropped and restrictions on the ci’s are imposed to make the rule
linear.

Example 4.1. Figure 3 illustrates a social network of individuals who share pho-
tographs. Each edge is labeled with the predicate share and has weight 1. The only
vertex predicate we consider in this case is buys camera.

A vendor wishes to sell a camera and wants to see how the popularity of the camera
will spread in the network. He wants to use a Jackson-Yariv style diffusion model.
Suppose the social network is embedded into GAP Π which has one Jackon-Yariv style
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Table IV. Comparison between standard and linear Jackson-Yariv Models

Vertex Atom Annotation Assigned by Annotation Assigned by
lfp(TΠcamera∪{buys camera(v2):1}) lfp(TΠlin∪{buys camera(v2):1})

buys camera(v1) 0.0 0.5
buys camera(v2) 1.0 1.0
buys camera(v3) 1.0 1.0
buys camera(v4) 0.0 0.0
buys camera(v5) 0.0 0.0
buys camera(v6) 0.0 0.0
buys camera(v7) 0.0 0.25
buys camera(v8) 0.0 0.5
buys camera(v9) 0.0 0.5
buys camera(v10) 0.0 0.5

SUM 2 4.25

tipping diffusion rule of the following form for each vertex v:

buys camera(v) :

⌊∑
j Xj∑
j Ej

⌋
←

∧
vj |⟨vj ,v⟩∈E

(shares(vj , v) : Ej ∧ buys camera(vj) : Xj)

We will call the GAP with the above diffusion rule Πstandard. Alternatively, we could
have a linear version of it as follows:

buys camera(v) :

∑
j Xj

|{vj |⟨vj , v⟩}|
←

∧
vj |⟨vj ,v⟩∈E

buys camera(vj) : Xj

We will call the GAP formed with the previous kind of diffusion rules Πlin. In this case,
it is clear that each rule head is annotated with the linear expression:

co + c1 ·X1 + . . .+ c|{vj |(vj ,v)∈E}| ·X|{vj |(vj ,v)∈E}|

Here, c0 = 0 and for all i > 0 we have,

ci =
1

|{vj |(vj , v) ∈ E}|

Clearly, each ci ∈ [0, 1] and the sum of all these constants is 1, which gives us linearity
in accordance with Definition 3.6. Table IV shows the least fixed point for the two
different GAPs (original JY model and the linear version) that arise when we assign
an annotation of 1 to vertex atom buys camera(v2) — it also shows the sum of the
annotations.

4.2. Cascading Diffusion Models
In a cascading model, a vertex obtains a property from one of its neighbors, typically
based on the strength of its relationship with the neighbor. These models were intro-
duced in the epidemiology literature in the early 20th century, but gained increased
notice with the seminal work of [Anderson and May 1979]. Recently, cascading
diffusion models have been applied to other domains as well. For example, [Cha et al.
2008] (diffusion of photos in Flickr) and [Sun et al. 2009] (diffusion of bookmarks in
FaceBook) both look at diffusion process in social networks as “social cascades” of
this type. In this section, we present an encoding of the popular SIR model of disease
spread in our framework.

The SIR Model of Disease Spread. The SIR (susceptible, infectious, removed) model
of disease spread [Anderson and May 1979] is a classic disease model which labels each
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vertex in a graph G = (V,E) (of humans) with susceptible if it has not had the disease
but can receive it from one of its neighbors, infectious if it has caught the disease and
trec units of time have not expired, and removed when the vertex can no longer catch
or transmit the disease. The SIR model assumes that a vertex v that is infected can
transmit the disease to any of its neighbors v′ with a probability pv,v′ for trec units of
time. It is assumed that becoming infected takes precisely a time unit. We would like
to find a set of at most k vertices that would maximize the expected number of vertices
that become infected. These are obviously good candidates to treat with appropriate
medications.

DIFFUSION MODEL 4.3 (SIR MODEL). Let S = (V,E, ℓvert, ℓedge, w) be an SN where
each edge is labeled with the predicate symbol e and w(⟨v, v′⟩) = pv,v′ assigns a prob-
ability of transmission to each edge . We use the predicate inf to designate the initially
infected vertices. In order to create a GAP ΠSIR capturing the SIR model of disease
spread, we first define trec predicate symbols rec1, . . . , rectrec where reci(v) intuitively
means that node v was infected i days ago. Hence, rectrec(v) means that v is “removed.”
We embed S into GAP ΠSIR by adding the following diffusion rules. If trec > 1, we add
a non-ground rule for each i = {2, . . . , trec} - starting with trec:

reci(V ) : R ← reci−1(V ) : R

rec1(V ) : R ← inf(V ) : R

inf(V ) : (1−R) · PV ′,V · PV ′ · (1−R′) ← rectrec(V ) : R ∧ e(V ′, V ) : PV ′,V ∧
inf(V ′) : PV ′ ∧ rectrec(V

′) : R′.

The first rule says that if a vertex is in its (i−1)’th day of recovery with confidence R
in the j’th iteration of the TΠSIR

operator, then the vertex is i days into recovery (with
the same confidence) in the j + 1’th iteration of the operator. Likewise, the second rule
intuitively encodes the fact that if a vertex became infected with confidence R in the
j’th iteration of the TΠSIR

operator, then the vertex is one day into recovery in the
j + 1’th iteration of the operator with the same confidence. The last rule says that if a
vertex V ′ was infected with confidence PV ′ and has not been removed with confidence
1 − R′, and there is an edge from V ′ to V in the social network (weighted with PV ′,V ),
given the confidence 1 − R that V has not already been removed, then the confidence
that the vertex V gets infected is (1 − R) · PV ′,V · PV ′(1 − R′). Here, PV ′(1 − R′) is one
way of measuring the confidence that V ′ is infected and has not recovered and PV ′,V is
the confidence of infecting the neighbor. Notice that e is a static property of the graph
which does not change over the time, so we do not need time indexes for it. As for inf ,
the reason why we can avoid using time indexes is that we can keep track of how much
time has gone since a vertex got infected with the predicates reci using the second rule.

To see how this GAP works, we execute a few iterations of the TΠSIR operator and
show the fixpoint that it reaches on the small graph shown in Figure 4. In this graph,
the initial infected vertices are those shown as a shaded circle. The transmission prob-
abilities weight the edges in the graph.

The SNDOP query (SUM, ∅, k, inf, inf) can be used to compute the expected number
of infected vertices in the least fixpoint of TΠ. This query says “find a set of at most
k vertices in the social network which, if infected, would cause the maximal number
of vertices to become infected in the future.” However, the above set of rules can
be easily used to express other things. For instance, an epidemiologist may not be
satisfied with only one set of k vertices that can cause the disease to spread to the
maximum extent - as there may be another, disjoint set of k vertices that could
cause the same effect. The epidemiologist may want to find all members of the
population, that if present in a group of size k could spread the disease to a max-
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Fig. 4. Left: Sample network for disease spread. Right: annotated atoms entailed after each application of
TΠSIR

(maximum, non-zero annotations only).

imum extent. This can be answered using a SNDOP-ALL query, described in Section 3.

The SIS Model of Disease Spread. The SIS (Susceptible-Infectious-Susceptible)
model [Hethcote 1976] is a variant of the SIR model where an individual becomes sus-
ceptible to disease after recovering (as opposed to SIR, where an individual acquires
permanent immunity). SIS can be easily represented by a simple modification to the
SIR model.

DIFFUSION MODEL 4.4 (SIS MODEL). Take Diffusion Model 4.3 and change the
third rule to

inf(V ) : PV ′,V · PV ′ · (1−R′) ← e(V ′, V ) : PV ′,V ∧ inf(V ′) : PV ′ ∧ rectrec(V
′) : R′.

Here, we do not consider the probability that vertex V is immune – hence the
probability of recovery does not change the probability of becoming infected.

Diffusion in the Flickr Photo Sharing Network. The Flickr social network al-
lows users to share photographs. Users create a list of “favorite” photos that can be
viewed by other users. [Cha et al. 2008] use a variant of SIS above to study how pho-
tographs spread to the favorite lists of different users. A key difference is that they do
not consider a node “recovered” – i.e. once a photo was placed on a favorite list, it was
relatively permanent (the study was conducted over about 100 days). They also found
that photos lower on a favorite list (as the result of a user marking a large number of
photos as “favorite”) for a given user could still spread through the network. A simple
GAP that captures the intuition of how Flickr photos spread according to [Cha et al.
2008] uses just one rule:

DIFFUSION MODEL 4.5 (FLICKR PHOTO DIFFUSION).

photoi(V ) : consti ·Xi ← connected to(V ′, V ) : 1 ∧ photoi(V
′) : Xi

In Diffusion Model 4.5, the annotation of the vertex atom photoi(V ) is the confidence
that vertex V has marked photo i as one of its favorites. The predicate connected to is
the sole edge label representing that there is a connection from vertex V ′ to V (users
select other users on this network). Additionally, the value consti is a number in [0, 1]
that determines how a given photo spreads in the network. Notice that the above rule
is linear, as the head is a linear combination and consti ∈ [0, 1]. We note that for all of
these models, the annotation functions reflect one interpretation of the confidence that
a vertex is infected or recovered – others are possible in our framework.
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4.3. Homophilic Diffusion Models
Recently, [Aral et al. 2009] studied the spread of mobile application use on a global
instant-messaging network of over 27 million vertices. They found that network-based
diffusion could overestimate the spread of a mobile application and, for this scenario,
over 50% of the adopted use of the applications was due to homophily - vertices
with similar properties adopting similar applications. Further, the recent experiment
of [Centola 2011] illustrates that homophily plays a role in enhancing adoption under
the tipping model.

These results should not be surprising – the basic idea behind web-search advertis-
ing is that two users with a similar property (search term) will be interested in the
same advertised item. In fact, [Cha et al. 2008] explicitly pre-processed their Flickr
data set with a heuristic to eliminate properties attached to vertices that could not be
accounted for by a diffusion process. We can easily represent homophilic diffusion in a
GAP with the following type of diffusion rule:

DIFFUSION MODEL 4.6 (HOMOPHILIC DIFFUSION OF A PRODUCT).

buys product(V ) : 0.5×X ← property(V ) : 1 ∧ exposed to product(V ) : X

In Diffusion Model 4.6, if a vertex is exposed to a product (e.g. through mass advertis-
ing) and has a certain property, then the person associated with the vertex purchases
the product with a confidence of 0.5×X, where X measures the extent of the exposure.
For this rule, there are no network effects.

In [Watts and Peretti 2007], the authors propose a “big seed” marketing approach
that combines both homophilic and network effects. They outline a strategy of advertis-
ing to a large group of individuals who are likely to spread the advertisement further
through network effects. We now describe a GAP that captures the ideas underlying
big seed marketing. Suppose we have a set of vertex predicate symbols AL ⊆ VP cor-
responding to people “attributes” – these may be certain demographic characteristics
such as education level, race, level of physical fitness, etc.. Suppose we want to adver-
tise to people having (at least) one of k ≤ |AL| attributes to maximize an aggregate agg
with respect to a goal predicate g (in other words, we want to choose k attributes and
advertise to people having those attributes so that agg with respect to g is maximized).
Consider the following construction.

DIFFUSION MODEL 4.7 (BIG SEED MARKETING). The GAP includes an embed-
ding of the social network as well as the network diffusion model of the user’s choice. We
make the the following additions to the GAP and the SN:

(1) Add vertex predicate symbol attrib to VP.
(2) For each lbl ∈ AL, add a vertex vlbl to V. We also set ℓvert(vlbl) = {attrib}.
(3) For each lbl ∈ AL, add the following non-ground rule:

g(V ) : eff lbl ×X ← lbl(V ) : 1 ∧ g(vlbl) : X
where eff lbl is a constant in [0, 1] corresponding to the confidence that, if advertised
to, a vertex v with attribute lbl obtains an annotation of 1 on g(v).

Our SNDOP query is (agg, V C, k, g(V ), g(V )), where V C = {attrib(V ) : 1}.

Note that in the above diffusion model, the vlbl vertices correspond to advertisements
directed toward different vertex properties. The V C condition forces the query to only
return vlbl vertices. As an example, a solution like {g(vlbl1), g(vlbl2)} means that we
are targeting people having attribute lbl1 or lbl2. The diffusion rule, added per label,
ensures that the mass advertisement is received and that the vertex acts accordingly
(hence the efflbl constants).
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We close this section with a note that while all diffusion models mentioned here have
been developed by others and have been shown above to be representable via GAPs,
none of these papers has developed algorithms to solve SNDOP queries. We emphasize
that not only do we give algorithms to answer SNDOP queries in the next section, our
algorithms take any arbitrary diffusion model that can be expressed as a GAP, and an
objective function as input. In addition, our notion of a social network is much more
general than that of many existing approaches.

5. ALGORITHMS
In this section we study how to solve SNDOPs algorithmically.

5.1. Naive Algorithm
The naive algorithm for solving a SNDOP query is to first find all pre-answers to
the query. Then compute the function value for each pre-answer and find the best.
This is obviously an extremely expensive algorithm that is unlikely to terminate in a
reasonable amount of time.

An execution strategy that first finds all vertices in a social network S that satisfy
the vertex condition and then somehow restricts interest to those vertices in the above
computation (where S is embedded in a GAP Π) would not be correct for two reasons.
First, lfp(TΠ) assigns a truth value to each ground vertex atom A that might be dif-
ferent from what is initially assigned within the social network. Second, when we add
a new ground vertex atom A to Π (e.g. in our cell phone example, when we consider
the possibility of assigning a free calling plan to a vertex v), it might be the case that
vertices that previously did not satisfy the vertex condition V C do so after the addition
of A to Π.

5.2. A Non-Ground Algorithm in the Monotonic Case
There are three major problems with the Naive algorithm. The first problem is that the
aggregate function is very general and has no properties that we can take advantage
of. Hence, we can show that the entire search space might need to be explored if an ar-
bitrary aggregate function is used. The second problem is that it works on the “ground”
instantiation of Π. The third problem is that the TΠ operator maps all ground atoms
to the [0, 1] interval and there can be a very large number of ground atoms to consider.
For instance, if we have a very small social network with just 1000 vertices and a rule
with 3 variables in it, that rule has 109 possible ground instances - an enormous num-
ber. All these problems are further aggravated by the fact that fixpoints might have to
be computed several times.

In this section, we provide an algorithm to compute answers to a SNDOP query un-
der the assumption that our aggregate function is monotonic and under the assumption
that all rules in a GAP have the form A : f(µ1, . . . , µn)← B1 : µ1,∧ · · · , Bn : µn, where
each µi is a member of [0, 1] ∪ AVar.

In this case, we define a non-ground interpretation and a non-ground fixpoint op-
erator SΠ. This leverages existing work on non-ground logic programming initially
pioneered by [M. Falaschi and Palamidessi 1988] and later adapted to different logic
programming extensions by [Gottlob et al. 1996; Eiter et al. 1997; Stroe and Subrah-
manian 2003]. We will use A∗ to denote the set of all atoms (ground and non-ground).
We start by defining a non-ground interpretation.

Definition 5.1. A non-ground interpretation is a partial mapping NG : A∗ → [0, 1].
Every non-ground interpretation NG represents an interpretation grd(NG) defined as
follows: grd(NG)(A) = max{NG(A′) | A is a ground instance of A′}. When there is no
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atom A′ which has A as a ground instance and for which NG(A′) is defined, then we
set grd(NG)(A) = 0.

Thus, in a language with just three constants a, b, c and one predicate symbol p, the
non-ground interpretation that maps p(X, a) to 0.5 and everything else to 0 corresponds
to the interpretation that assigns 0.5 to p(a, a), p(b, a) and p(c, a) and 0 to every other
ground atom. Non-ground interpretations are succinct representations of ordinary in-
terpretations - they try to keep track only of assignments to non-ground atoms (not
necessarily all ground atoms) and they do not need to worry about atoms assigned 0.
We now define a fixpoint operator that maps non-ground interpretations to non-ground
interpretations.

Definition 5.2 (operator SΠ). The operator SΠ associated with a GAP Π maps
a non-ground interpretation NG to the non-ground interpretation SΠ(NG) where
SΠ(NG)(A′) = max{f(X1, . . . , Xn) | A : f(µ1, . . . , µn)← B1 : µ1 ∧ . . . ∧ Bn : µn is a rule
in Π and there exist atoms (B′1, . . . , B

′
n) such that NG(B′i) is defined for all 1 ≤ i ≤ n,

(B1, . . . , Bn) and (B′1, . . . , B
′
n) are simultaneously unifiable via a most general unifier

θ, A′ = Aθ, and (i) if µi is a constant, then NG(B′i) ≥ µi – in this case Xi = µi, and (ii)
if µi is a variable, then Xi = NG(B′i)}. (In this definition, without loss of generality, we
assume the variables occurring in rules in Π are mutually standardized apart and are
also different from those in NG).

The fixpoint operator SΠ delays grounding to the maximal extent possible by (i) only
looking at the rules in Π directly rather than ground instances of rules in Π (which
is what TΠ does), and (ii) by trying to assign values to non-ground atoms rather than
ground instances - unless there is no other way around it. The following example shows
how SΠ works.

Example 5.3. For illustrative purposes, suppose we have the following GAP Π:

e(V, a) : 1
p(V ) : 0.7
q(V ′) : X ← p(V ′) : X, e(V ′, a) : 0.5

Let us apply SΠ till we reach a fixed point. With the first application, we entail the
(non-ground) annotated atoms e(V, a) : 1, p(V ) : 0.7 (we use the first and second facts).
With the next application, q(V ′) : 0.7 is entailed. In fact, notice that the atoms in
the body of the third rule, namely p(V ′), e(V ′, a), can be unified with e(V, a), p(V ), for
which the interpretation obtained in the first iteration is defined; moreover, the value
of e(V, a) in the interpretation is greater than 0.5. Notice also that in assigning a value
to q(V ′), the value of p(V ′) in the current interpretation is used, that is, 0.7 is used in
place of X. At this point the least fixed point is reached.

Consider the ordering⪯ defined as follows on non-ground interpretations: NG1 ⪯ NG2

iff grd(NG1) ≤ grd(NG2). In this case, it it easy to see that:

PROPOSITION 5.4. Suppose Π is any GAP. Then:

(1) SΠ is monotonic.
(2) SΠ has a least fixpoint lfp(SΠ) and lfp(TΠ) = grd(lfp(SΠ)). That is, lfp(SΠ) is a

non-ground representation of the (ground) least fixpoint operator TΠ.

In short, SΠ is a version of TΠ that tries to work in a non-ground manner as much as
possible. We now present the SNDOP-Mon algorithm to compute answers to a SNDOP
query (agg, V C, k, gI(V ), gO(V )) when agg is monotonic. The SNDOP-Mon algorithm
uses the following notation: value(NG) is the same as value(grd(NG)) and NG satisfies
a formula iff grd(NG) satisfies it.
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SNDOP-Mon(Π, agg, V C, k, gI(V ), gO(V ))

(1) The variable Curr is a tuple consisting of a GAP and natural number. We initialize
Curr.Prog = Π; Curr.Count = 0.

(2) Todo is a set of tuples described in step 1. We initialize Todo ≡ {Curr}
(3) Initialize the real number bestV al = 0 and GAP bestSOL = NIL

(4) while Todo ̸≡ ∅ do
(a) Cand = first member of Todo
(b) if value(lfp(SCand.Prog)) ≥ bestV al ∧ lfp(SCand.Prog) |= V C then

i. bestV al = value(lfp(SCand.Prog); bestSOL = Cand
(c) if Cand.Count < k then

i. For each ground atom gI(v), s.t. ̸ ∃OtherCand ∈ Todo where
OtherCand.Prog ⊇ Cand.Prog,
|OtherCand.Prog| ≤ |Cand.Prog|+ 1,
and lfp(SOtherCand.Prog) |= gI(v) : 1, do the following:
A. Create new tuple NewCand.

Set NewCand.Prog = Cand.Prog ∪ {gI(v) : 1}.
Set New.Count = Cand.Count+ 1)

B. Insert NewCand into Todo
ii. Sort the elements of Element ∈ Todo in descending order of value(Element.Prog),

where the first element, Top ∈ Todo, has the greatest such value (i.e. there does not
exist another element Top′ s.t. value(Top′.P rog) > value(Top.Prog))

(d) Todo = Todo− {Cand}
(5) if bestSOL ̸= NIL then return (bestSOL.Prog −Π) else return NIL.

Fig. 5. Search tree for Example 5.5.

The following example shows how the SNDOP-Mon algorithm works.

Example 5.5. Consider Example 3.16 from page 14 where we present a social
network and some diffusion rules for disease spread embedded in program Πdisease.
Suppose, we want to answer a SNDOP query (Πdisease, SUM, true, 2, inf(V ), inf(V )).
The search-tree in Figure 5 illustrates how SNDOP-Mon searches for an optimal
solution to the query. In the figure, we labeled each node with the set of vertices
and a real number. The vertices correspond to the vertex atoms (annotated with
1) formed with inf added to GAP in step 4(c)i. The real number corresponds to
the value resulting from this addition. Underlined nodes in the search tree rep-
resent potential solutions where bestV al and bestSOL are updated. Notice, that,
for example, the set {v4, v1} is never considered. This is because inf(v1) is entailed
anytime a candidate solution includes v4. The optimal solution is found to be
{v7, v5}. In this example, the algorithm considers solutions in the following order:
{}, {v4}, {v4, v7}, {v4, v5}, {v4, v6}, {v7}, {v7, v5}, {v7, v1}, {v7, v2}, {v7, v3}, {v5},
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{v5, v6}, {v5, v1}, {v5, v2}, {v5, v3}, {v6}, {v6, v1}, {v6, v2}, {v6, v3}, {v1}, {v2}, {v3}.

The following result states that the SNDOP-Mon algorithm is correct.

THEOREM 5.6. Given SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) and a GAP Π
embedding a social network S, if agg is monotonic then:
• There is an answer to the SNDOP query Q w.r.t. Π iff SNDOP-

Mon(Π, agg, V C, k, gI(V ), gO(V )) does not return NIL.
• If SNDOP-Mon(Π, agg, V C, k, gI(V ), gO(V )) returns any result other than NIL, then

that result is an answer to the SNDOP query Q w.r.t. Π.

5.3. Approximation Algorithms: GREEDY-SNDOP
Even though SNDOP-Mon offers advantages such as pruning of the search tree and
leverages non-ground operations to increase efficiency over the naive algorithm, it is
still intractable in the worst case. Regretfully, Theorem 3.17 precludes an exact so-
lution in PTIME and Theorem 3.20 precludes a PTIME α-approximation algorithm
where α < e

e−1 . Both of these results hold for the restricted case of linear-GAPs and
positive-linear aggregate functions.

The good news is that we were able to show that (i) for linear-GAPs and a-priori
VC queries with positive-linear aggregates, the value function is submodular (Theo-
rem 3.15). (ii) Under these conditions, we can reduce the problem to the maximiza-
tion of a submodular function over a uniform matroid (the uniformity of the ma-
troid is proved in Lemma 3.14 for a-priori VC queries). (iii) We can leverage the work
of [Nemhauser et al. 1978] that admits a greedy e

e−1 approximation algorithm. In this
section, we develop a greedy algorithm for SNDOP queries that leverages the above
three results.

The GREEDY-SNDOP algorithm shown below assumes a linear GAP, an a-priori VC
query with positive-linear aggregates, and a zero-starting value function (notice that
the latter requirement can be met as stated by Proposition 3.11). The algorithm pro-
vides e

e−1 approximation to the SNDOP query problem. As this matches the upper
bound of Theorem 3.20, we cannot do better in terms of an approximation guarantee.

GREEDY-SNDOP(Π, agg, V C, k, gI(V ), gO(V )) returns SOL ⊆ V

(1) Initialize SOL = ∅ and REM = {v ∈ V|
(
{gI(v) : 1} ∪

∪
pred∈ℓvert(v)

{pred(v) : 1}
)
|=

V C[V/v]}
(2) While |SOL| < k and REM ̸= ∅

(a) vbest = null, val = value(SOL), inc = 0
(b) For each v ∈ REM, do the following

i. Let incnew = value(SOL ∪ {v})− val
ii. If incnew ≥ inc then inc = incnew and vbest = v

(c) SOL = SOL ∪ {vbest}, REM = REM− {vbest}
(3) Return SOL

We now analyze the time complexity of GREEDY-SNDOP.

PROPOSITION 5.7. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social
network S, and a GAP Π ⊇ ΠS , the complexity of GREEDY-SNDOP is O(k · |V| · F (|V|))
where F (|V|) is the time complexity to compute value(V′) for some set V′ ⊆ V of size k.
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Table V. First iteration of the greedy algorithm

Vertex Atom v1 v2 v3 v5 v7 v9 v10

buys camera(v1) 1.0 0.5 0.0 0.5 0.0 0.0 0.0
buys camera(v2) 0.0 1.0 0.0 0.0 0.0 0.0 0.0
buys camera(v3) 0.0 1.0 1.0 0.0 0.0 0.0 0.0
buys camera(v4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
buys camera(v5) 0.0 0.0 0.0 1.0 0.0 0.0 0.0
buys camera(v6) 0.0 0.0 0.0 0.0 0.0 0.0 0.0
buys camera(v7) 0.0 0.25 0.25 0.0 1.0 0.0 0.0
buys camera(v8) 0.0 0.5 0.5 0.0 0.0 0.0 0.0
buys camera(v9) 0.33 0.5 0.33 0.17 0.0 1.0 0.33
buys camera(v10) 0.0 0.5 0.5 0.0 0.0 0.0 1.0

SUM 1.33 4.25 2.58 1.67 1.0 1.0 1.33

Table VI. Incremental Increases for Both Iterations of GREEDY-
SNDOP

Vertex Incremental Increase Incremental Increase
on First Iteration on Second Iteration

v1 1.33 0.67
v2 4.25 NA
v3 2.58 0.0
v5 1.67 1.67
v7 1.0 0.75
v9 1.0 0.5
v10 1.33 0.67

We note that most likely, the most expensive operation is the computation of value
at line 2(b)i. One obvious way to address this issue is by using a non-ground version of
the fixed-point.

THEOREM 5.8. Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social net-
work S, and a GAP Π ⊇ ΠS , if

— Π is a linear GAP,
— Q is a-priori VC,
— agg is positive-linear, and
— value is zero-starting,

then GREEDY-SNDOP is an ( e
e−1 )-approximation algorithm.

Example 5.9. Consider Example 4.1 and program Πlin from page 19. Assume we
have an additional vertex predicate symbol pro assigned to professional photographers
(who are depicted with shaded vertices in Figure 3). Consider the SNDOP query where
agg = SUM, V C = {pro(V )}, k = 2, gI(V ) = buys camera(V ), gO(V ) = buys camera(V ).

On the first iteration of GREEDY-SNDOP, the algorithm computes the value for all
vertices in the set REM which are v1, v2, v3, v5, v7, v9, v10. The resulting annotations of
the fixed points and aggregates are shown in Table V.

As value(∅) = 0, the incremental increase afforded by v2 is 4.25 – and clearly the
greatest of all the vertices considered. GREEDY-SNDOP adds v2 to SOL, removes it
from REM and proceeds to the next iteration. Table VI shows the incremental in-
creases for the second iteration. As v5 provides the greatest increase, it is picked, and
the resulting solution is {v2, v5}.

6. IMPLEMENTATION AND EXPERIMENTS
We have implemented the GREEDY-SNDOP algorithm in 660 lines of Java code by
re-using and extending the diffusion modeling Java library of [Broecheler et al. 2010]
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(approx 35K lines of code). Our implementation uses multiple threads in the inner
loop of the GREEDY-SNDOP algorithm to increase efficiency. All experiments were
executed on the same machine with a dedicated 4-core 2.4GHz processor and 22GB
of main memory. Times were measured to millisecond precision and are reported in
seconds.

6.1. Experimental Setting
Data set. In order to evaluate GREEDY-SNDOP, we used a real-world dataset based
on a social network of Wikipedia administrators and authors. Wikipedia is an online
encyclopedia collaboratively edited by many contributors from all over the world.
Selected contributors are given privileged administrative access rights to help main-
tain and control the collection of articles with additional technical features. A vote by
existing administrators and ordinary authors determines whether an individual is
granted administrative privileges. These votes are publicly recorded. [Leskovec et al.
2010] crawled 2794 elections from the inception of Wikipedia until January 2008.
The votes casted in these elections give rise to a social network among Wikipedia
administrators and authors by representing a vote of user i for user j as a directed
edge from node i to j. In total, the dataset contains 103, 663 votes (edges) connecting
more than 7000 Wikipedia users (vertices). Hence, the network is large and densely
connected.11

SNDOP-Query. In our experiments, we consider the hypothetical problem of finding
a set of administrators having the highest overall influence in the Wikipedia social
network described above. We treat votes as a proxy for the inverse of influence. In other
words, if user i voted for user j, we assume user j (intentionally through lobbying or
unintentionally through the force of his contributions to Wikipedia) influenced user i
to vote for him. All edges are assigned a weight of 1. Our SNDOP queries are designed
as per the following definition.

Definition 6.1 (Wikipedia SNDOP-Query). Given some natural number k > 1, a
Wikipedia SNDOP query, WQ(k) is specified as follows:

— agg = SUM – the intuition is that the aggregate provides us an expected number of
vertices that are influenced.

— V C = ∅ – we do not use a vertex condition in our experiments
— k as specified by the input
— gI(V ) = gO(V ) = influenced(V )

Diffusion Models Used. We represented the diffusion process with two different
models: one tipping and one cascading.

— Cascading diffusion model. We used the Flickr Diffusion Model (Diffusion
Model 4.5 on page 22) described in Section 4.2. In this model, a constant parameter
α represents the “strength” or “likelihood” of influence. The larger the parameter α
the higher the influence of a user on those who voted for her.

— Tipping diffusion model. [Cha et al. 2009] shows that there is a relationship be-
tween the likelihood of a vertex marking a photo as a favorite and the percentage
of their neighbors that also marked that photo as a favorite. This implies a tipping-
model (as in Section 4.1). We apply the Jackson-Yariv model (i.e. Diffusion Model 4.2)

11Our Wikipedia data set does not include edge weights. However, including edge weights should not appre-
ciably change the experimental results which show that solving SNDOP queries when tipping models are
used is faster, in general, than when cascade models are used.
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Fig. 6. Runtimes of GREEDY-SNDOP for different values of α and k = 5 in both diffusion models

with B equated to influenced. For each vertex vj ∈ V, we set the benefit to cost ratio
( bjcj ) to 1. Finally, the function γ defined in the Jackson Yariv model is the constant-
valued function (for all values of x):

γ(x) = α.

This says that irrespective of the number of neighbors that a vertex has, the benefit
to adopting strategy B (i.e. influenced) is α. Therefore, the resulting diffusion rule
for the linear Jackson-Yariv model is:

influenced(v) : α ·
∑

j Xj

|{vj |⟨vj , v⟩}|
←

∧
vj |⟨vj ,v⟩∈E

influenced(vj) : Xj

For both models, we derive a unique logic program for each setting of the parameter
α. The parameter α depends on the application and can be learned from ground truth
data. In our experiments, we varied α to avoid introducing bias.

6.2. Experimental Results
Run-time of GREEDY-SNDOP with varying α and different diffusion models.
Figure 6 shows the total runtime of GREEDY-SNDOP in seconds to find the set of k = 5
most influential users in the Wikipedia voting network for different values of the
strength of influence parameter α. We varied α from 0.05 (very low level of influence)
to 0.5 (very high level of influence) for both the cascading and tipping diffusion model.
We observe that higher values of α lead to higher runtimes as expected since the scope
of influence of any individual in the network is larger. Furthermore, we observe that
the runtimes for the tipping diffusion model increase more slowly with α compared to
the cascading model.

Run-time of GREEDY-SNDOP with varying k. For the next set of experiments,
we keep the strength of influence fixed to α = 0.2 and varied k which governs the
size of the set of influencers. Figure 7 reports the runtime of GREEDY-SNDOP for
the query WQ(k) with k = 5, 10, 15, 20, 25. For the cascading model, the runtime
is approximately linear in k – a curve-fitting analysis using Excel showed a slight
superlinear trend (even though the figure itself looks linear at first sight). Figure 8
shows the time taken to execute each of the 25 iterations of the outer loop for the

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.



Social Network Diffusion Optimization Problems A:31

0  

10000  

20000  

30000  

40000  

50000  

60000  

70000  

5   10   15   20   25  

Ti
m
e  
in
  s
ec
  

Number  of  computed  individuals  

Time  to  find  Individuals  

Cascading  Diffusion  
Tipping  Diffusion  

Fig. 7. Runtimes of GREEDY-SNDOP for different values of k and α = 0.2 in both diffusion models

0  

500  

1000  

1500  

2000  

2500  

3000  

3500  

1   2   3   4   5   6   7   8   9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  

Ti
m
e  
in
  s
ec
  

Index  of  Individual  

Time  per  Individual  

Cascading  Diffusion  
Tipping  Diffusion  

Fig. 8. Time per iteration of GREEDY-SNDOP for α = 0.2 in both diffusion models

query WQ(25) with α = 0.2. Note that each subsequent iteration is more expensive
than the previous one since the size of the logic programs to consider increases with
the addition of each ground atom influenced(vi). However, we also implemented the
practical improvement of “lazy evaluation” of the submodular function as described
in [Leskovec et al. 2007b]. This improvement, which maintains correctness of the
algorithms, stores previous improvements in total score and prunes the greedy search
for the highest scoring vertex as discussed. We found that this technique also reduced
the runtime of subsequent iterations.

Our experimental results show that we can answer SNDOP queries on large social
networks. For example, computing the set of five most influential Wikipedia users in
the voting network required approximately 2 hours averaged over the different values
of α in the tipping diffusion model.
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7. RELATED WORK
There has been extensive work in reasoning about diffusion in social networks. How-
ever, to our knowledge, there is no work on the relationship between logic program-
ming and social networks. Moreover, there is no general framework to solve social net-
work diffusion optimization problems that can take a broad class of diffusion models
as input. We believe this work represents the first deterministic framework for repre-
senting generalized diffusion models that allows for different properties and weights
on vertices and edges. Previously, the authors presented the framework of SNDOPs
in [Shakarian et al. 2010]. However, this brief technical communication did not in-
clude either our exact or approximate algorithms, an implementation, experiments,
the SNDOP-ALL problem, many of the complexity results, or many of the constructions
seen in this paper (such as the homophilic diffusion models and big-seed marketing).

7.1. Related Work in Logic Programming
We first compare our work with annotated logic programming [Kifer and Subrahma-
nian 1992; Kifer and Lozinskii 1992; Thirunarayan and Kifer 1993] and its many ex-
tensions and variants [Vennekens et al. 2004; Krajci et al. 2004; Lu 1996; Lu et al.
1993; Damasio et al. 1999; Kern-Isberner and Lukasiewicz 2004; Lukasiewicz 1998].
There has been much work on annotated logic programming and we have built on
the syntax and semantics of annotated LP. [Swift 1999] describes how lattice answer
subsumption can implement GAPs whereas [Swift and Warren 2010] describes its im-
plementation (as well as the implementation of partial order answer subsumption)
in XSB and analyzes its performance showing scalability for applications in social
network analysis, abstract interpretation, and query justification. We also note that
possibilistic logic [Dubois and Prade 1990; Dubois et al. 1991] might be extended to
handle the types of calculations GAPs support. In fact, GAPs may be viewed as such
an extension of possibilistic logic. However, we are not aware of any work on solving
optimization queries (queries that seek to optimize an aggregate function) w.r.t. anno-
tated logic programming.

[Raedt et al. 2007] proposes a probabilistic version of Prolog, called ProbLog. A
ProbLog program consists of a set of definite clauses (like in Prolog) where each clause
is associated with a probability. Given a ProbLog program T , the authors induce a
probability distribution over the space of definite logic programs L ⊆ LT , where LT is
the definite logic program obtained from T by stripping out the probabilities. The prob-
ability of L ⊆ LT is obtained as

∏
ci∈L pi×

∏
ci∈LT−L(1− pi), where pi is the probability

of clause ci. The probability that a query succeeds is the sum of the probabilities of the
Prolog programs L ⊆ LT where the query succeeds. The semantics of ProbLog is called
the distribution semantics; it has been borrowed from PRISM [Sato 1995]. Basically,
in the distribution semantics all facts are assumed to be mutually independent [Hom-
mersom and Lucas 2011]. Similar assumptions are made in certain other logics such
as Independent Choice Logic [Poole 2008] and PRISM [Sato 1995; Sneyers et al. 2010].
Ng and Subrahmanian [Ng and Subrahmanian 1992; 1993] propose probabilistic logic
programs where the independence assumption is not required - but this is computa-
tionally expensive though recent approaches [Khuller et al. 2007] based on sampling
have been shown to scale very well to the case of 100K atoms. In order to compute the
success probability of a query, [Raedt et al. 2007] first builds a monotone DNF formula
(this represents the proofs of the query when probabilities are ignored), and then uses
a BDD based approach to compute the probability. The approach is experimentally
evaluated on biological networks showing good scalability.

The independence assumption is frequently made in many applications — however,
in social networks, assuming independence of node properties and/or diffusions can be
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dangerous because the diffusive process explicitly is one of dependency - the probabil-
ity of vertex A being infected by a neighbor is directly dependent on the probabilities
of one or more of its neighbors being infected. We note that [Raedt et al. 2007] does not
provide any results on solving social network optimization problems.

In many logics that incorporate independence assumptions including [Raedt et al.
2007; Sneyers et al. 2010; Poole 2008], the probability of diffusion from neighbors of
a vertex to a vertex are computed via the independence assumption. In the simplest
sense, consider a vertex v and two vertices a, b such that (a, v), (b, v) are edges in the
graph and suppose there are no other edges of the form (−, v). Suppose we know that
the probability of v being infected by a (resp. b) is 0.7 (resp. 0.5). In this case, the
probability of infection of v under the assumption of independence is 0.7+0.5−0.7×0.5 =
0.85. The reason independence is important here is that P(E ∨ E′) = P(E) +P(E′)−
P(E ∧ E′) and P(E ∧ E′) = P(E) × P(E′) only when the events E,E′ are mutually
independent.

When independence is not assumed between E and E′, one must compute P(E ∧ E′)
by either solving a linear program or via some other method. Dekhtyar et al. [Dekht-
yar et al. 1999; Dekhtyar and Subrahmanian 2000] developed methods to not only
find such probabilities when the independence assumption cannot be made, but also
suggested how different assumptions on the relationships between events (e.g. pos-
itive correlation, negative correlation, mutual exclusion and independence) could be
computed via hybrid logic programs. For example, if we assume that an arbitrary tri-
angular co-norm12 [Bonissone 1987b]⊕ is used to compute the (disjunctive) probability
that vertex v is infected by either a or by b, then we can express the diffusion via the
GAP rule:

inf(v) : V1 ⊕ V2 ← inf(a) : V1 ∧ inf(b) : V2.

Thus we see that such rules can capture triangular co-norms (including that used to
compute the probability of a disjunct under the independence assumption).

However, though GAPs can be more expressive than many languages such as [Raedt
et al. 2007; Sneyers et al. 2010; Poole 2008], there is no guarantee that they will be
more “efficient” or more “intuitive” when additional assumptions such as indepen-
dence are made. For instance, suppose we consider a more complex situation where
we have three vertices a, b, c and the same vertex v above. And suppose we have edges
(a, v), (b, v), (c, v) in our graph and we want to say that infection propagation is inde-
pendent. In this case, we can express this as a GAP by writing the rules shown below:

inf(v) : V ← edge(X, v) : 1 ∧ inf(X) : V.

inf(v) : V1 ⊕ V2 ← edge(X, v) : 1 ∧ edge(Y, v) : 1 ∧
inf(X) : V1 ∧ inf(Y ) : V2 ∧ X ̸= Y.

inf(v) : V1 ⊕ V2 ⊕ V3 ← edge(X, v) : 1 ∧ edge(Y, v) : 1 ∧ edge(Z, v) : 1 ∧
inf(X) : V1 ∧ inf(Y ) : V2 ∧ inf(Z) : V3 ∧
X ̸= Y ∧ Y ̸= Z ∧ X ̸= Z.

12A triangular co-norm is a function ⊕ : [0, 1] × [0, 1] → [0, 1] stating the probability of computing the “or”
of two events whose probabilities are known and are provided as input to ⊕. All triangular co-norms satisfy
the following axioms. (Ax1) ⊕ is associative and commutative. (Ax2) x⊕ 0 = x. (Ax3) ⊕ is monotone, i.e. if
x ≤ x′ and y ≤ y′ then x ⊕ y ≤ x′ ⊕ y′. This axiom says that when the probabilities of both events go up
(or stay the same), the probability of the “or” can only go up (or stay the same). Triangular co-norms have
been extensively studied in logic programming as long back as 1988 [Subrahmanian 1988] — max(x, y) and
x+ y − x ∗ y are two well known triangular co-norms — and there are many others.
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When x⊕ y = x+ y− x ∗ y, then the above rules correspond to propagation under an
independence assumption - otherwise ⊕ can be any triangular co-norm.

In this case, we wrote three rules, one for each possible number of infected prede-
cessors of v. The first rule covers the case where we want the infection to pass from
exactly one predecessor to v. The second rule covers all possible combinations of two
predecessors of v passing the infection on. The third rule looks at the case where all
three predecessors pass the infection along. Though this GAP is seemingly larger and
more cumbersome than the simple conditional probability statement governing infec-
tions discussed above, we can show that indeed the third rule is the only one that is
needed and this holds for any triangular co-norm — in fact, the semantics of the above
GAP is identical to the semantics of the above GAP with just the last rule (plus the
social network). Intuitively, the reason is that the probability of v getting the infection
from all three is always greater than or equal to the probability of v getting it from just
one or just two of its predecessors.

We now generalize the observations above. When we apply a triangular co-norm⊕ to
a set {x1, . . . , xk}, we use⊕({x1, . . . , xk}) as short-hand for⊕(x1,⊕({x2, . . . , xn})) which
is well defined as all triangular co-norms are commutative and associative.

The following proposition says a triangular co-norm ⊕ applied to a set S′ always
gives a value no smaller than the value obtained by applying ⊕ to a subset of S′.

PROPOSITION 7.1. Let S and S′ be two sets of elements in [0, 1], and ⊕ a triangular
co-norm. If S ⊆ S′, then ⊕S ≤ ⊕S′.

PROOF. Suppose S ⊆ S′. We show that ⊕S ≤ ⊕(S ∪∆S) for any ∆S ⊆ S′ − S. This
is shown by induction on the cardinality i of ∆S.
Base case i = 0. Straightforward.
Inductive step. Suppose ⊕S ≤ ⊕(S ∪ ∆Si) for any ∆Si ⊆ S′ − S such that |∆Si| = i.
Let ∆Si+1 ⊆ S′ − S be such that |∆Si+1| = i + 1. Consider a set ∆Si s.t. ∆Si ⊆ ∆Si+1

and |∆Si| = i and let ei be the element in ∆Si+1 but not in ∆Si. Ax2 implies that
⊕(S ∪∆Si) = (⊕(S ∪∆Si))⊕ 0. By the associative and commutative properties of ⊕ we
have ⊕(S ∪ ∆Si+1) = (⊕(S ∪ ∆Si)) ⊕ ei. As 0 ≤ ei, then ⊕(S ∪ ∆Si) ≤ ⊕(S ∪ ∆Si+1)
by the monotonicity property. As ⊕S ≤ ⊕(S ∪ ∆Si) (by induction hypothesis), then
⊕S ≤ ⊕(S ∪∆Si+1).

Thus, in order to deal with the infection scenario discussed above it suffices to write
rules of the form:

inf(V ) : V1 ⊕ · · · ⊕ Vn ← edge(X1, V ) : 1 ∧ · · · ∧ edge(Xn, V ) : 1 ∧
inf(X1) : V1 ∧ . . . ∧ inf(Xn) : Vn ∧∧
1≤i<j≤n

Xi ̸= Xj .

Note that one such rule must be generated for each value n s.t. there is a node in the
social network with in-degree n.

Thus, though GAPs provide a general method to express a vast variety of both prob-
abilistic and non-probabilistic diffusion models, some of these methods can lead to an
increase in the size of the GAP. When certain probabilistic assumptions are warranted
(such as independence) then it may be appropriate to use the techniques for solving so-
cial network optimization problems presented in this paper in conjunction with frame-
works such as ProbLog or Independent Choice Logic that may be able to leverage their
assumptions to produce good solutions under those assumptions. However, much more
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experimentation is required to understand the pros and cons of such choices and we
leave this to future work.

There are a few papers on solving optimization problems in logic programming. The
best of these is constraint logic programming [Van Hentenryck 2009] which can embed
numerical computations within a logic program. However, CLP does not try to find so-
lutions to optimization problems involving semantics structures of the program itself.
Important examples of constraint logic programming include [Frühwirth 1994; Man-
carella et al. 1999] where annotated LP is used for temporal reasoning, [Leone et al.
2004] assumes the existence of a cost function on models. They present an analysis of
the complexity and algorithms to compute an optimal (w.r.t. the cost function) model
of a disjunctive logic program in 3 cases: when all models of the disjunctive logic pro-
gram are considered, when only minimal models of the disjunctive logic program are
considered, and when stable models of the disjunctive logic program are considered.
In contrast, in this paper, there are two differences. First, we are considering GAPs.
Second, we are not looking for models of a GAP that optimize an objective function -
rather, we are trying to find models of a GAP together with some additional informa-
tion (namely some vertices in the social network for which a goal atom g(v) : 1 is added
to the GAP) which is constrained (at most k additional atoms) so that the resulting
least fixpoint has an optimal value w.r.t. an arbitrary value function. In this regard, it
has some connections with abduction in logic programs [Eiter and Gottlob 1995], but
there is no work on abduction in annotated logic programs that we are aware of or
work that optimizes an arbitrary objective function.

Our paper builds on many techniques in logic programming. It builds upon non-
ground fixpoint computation algorithms proposed by [M. Falaschi and Palamidessi
1988] and later extended for stable models semantics [Gottlob et al. 1996; Eiter et al.
1997], and extends these non-ground fixpoint algorithms to GAPs and then applies the
result to define the SNDOP-Mon algorithm to find answers to SNDOP queries which,
to the best of our knowledge, have not been considered before.

7.2. Work in Social Networks
[Kempe et al. 2003] is one of the classic works in this area where a generalized diffu-
sion framework for social networks is proposed. This work presents two basic diffusion
models: the linear threshold and independent cascade models. Both models utilize ran-
dom variables to specify how the diffusion propagates. These models roughly resemble
non-deterministic versions of the tipping and cascading models presented in Section 4
of this paper. Neither model allows for a straightforward representation of multiple
vertex or edge labels as this work does. Additionally, unlike this paper, where we use a
fixed-point operator to calculate how the diffusion process unfolds, the diffusion mod-
els of [Kempe et al. 2003] utilize random variables to define the diffusion process and
compute the expected number of vertices that have a given property. The authors of
[Kempe et al. 2003] only approximate this expected value and leave the exact computa-
tion of it as an open question. Further, they provide no evidence that their approxima-
tion has theoretical guarantees. Moreover, Lemma 7.1 and the discussion immediately
preceding it show how the linear threshold model mentioned in Kleinberg[Kempe et al.
2003] can be expressed via GAPs with no loss of generality (but with an increase in
the number of rules in the GAP that can affect performance).

The more recent work of [Chen et al. 2010] showed this computation to be #P-hard
by a reduction from S-T connectivity, which has no known approximation algorithm.
This suggests that a reasonable approximation of the diffusion process of [Kempe et al.
2003] may not be possible. This contrasts sharply with the fixed-point operator of [Kifer
and Subrahmanian 1992], which can be solved in PTIME under reasonable assump-
tions (which are present in this paper). [Kempe et al. 2003] focus on the problem of
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finding the “most influential nodes” in the graph – which is similar in intuition to a
SNDOP query. However, this problem only looks to maximize the expected number of
vertices with a given property, not a complex aggregate as a SNDOP query does. Fur-
ther, the approximation guarantee presented for the “most influential node” problem
is contingent on an approximation of the expected number of vertices with a certain
property, which is not shown (and, as stated earlier, was shown by [Chen et al. 2010]
to be a #P-hard problem).

In short, the frameworks of [Chen et al. 2010] and [Kempe et al. 2003] cannot handle
arbitrary aggregates nor vertex conditions nor edge and vertex predicates nor edge
weights as we do. Nor can they define an objective function using a mix of the aggregate
and the gO(−) predicate specified in the definition of a SNDOP query.

Another well-studied related problem in computer science is the “target set selec-
tion” problem [Dreyer and Roberts 2009; Chen 2009; Chiang et al. 2011]. This problem
assumes a deterministic tipping model and seeks to find a set of vertices of a certain
size that optimizes the final number of adopters. Although approximation algorithms
for this problem have been discovered, there is no evidence that they scale well for
large datasets. Further, an easy modification of Diffusion Model 4.1 allows for this
problem to be represented in our framework. While target set selection can be encoded
as an SNDOP query, a straightforward encoding of an SNDOP query into target set
selection is unlikely. This is because the target set selection problem does not consider
multiple vertex and edge labels nor seeks to optimize a complex aggregate.

8. CONCLUSION
Social networks are proliferating rapidly and have led to a wave of research on diffu-
sion of phenomena in social networks. In this paper, we introduce the class of Social
Network Diffusion Optimization Problems (SNDOPs for short) which try to find a set
of vertices (where each vertex satisfies some user specified vertex condition) that has
cardinality k or less (for a user-specified k > 0) and that optimizes an objective func-
tion specified by the user in accordance with a diffusion model represented via the
well-known Generalized Annotated Program (GAP) framework. We have used specific
examples of SNDOP queries drawn from product adoption (cell phone example) and
epidemiology.

The major contributions of this paper include the following:

— We showed that answering SNDOP queries is NP-hard and identified the complexity
classes associated with related problems (under various restrictions). We showed
that the complexity of counting the number of solutions to SNDOP queries is #P-
complete.

— We proved important results showing that there is no polynomial-time algorithm
that computes an α-approximation to a SNDOP query when α ≥ e

e−1 .
— We described how various well-known classes of diffusion models (cascading, tipping,

homophilic) from economics, product adoption and marketing, and epidemiology can
be embedded into GAPs.

— We presented an exact-algorithm for solving SNDOP queries under the assumption
of a monotonic aggregate function.

— We proved that SNDOP queries are guaranteed to be submodular when the GAP
representing the diffusion model is linear and the aggregate is positive-linear. We
were able to leverage this result to develop the GREEDY-SNDOP algorithm that
runs in polynomial-time and that achieves the best possible approximation ratio of
e

e−1 for solving SNDOPs.
— We develop the first implementation for solving SNDOP queries and showed it could

scale to a social network with over 7000 vertices and over 103,000 edges. Our exper-
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iments also show that SNDOP queries over tipping models can generally be solved
more quickly than SNDOP queries over cascading models.

Much work remains to be done and this paper merely represents a first step towards
the solution of SNDOP queries. Clearly, we would like to scale SNDOP queries to social
networks consisting of millions of vertices and billions of edges. This will require some
major advances and represents a big challenge.

ELECTRONIC APPENDIX
The electronic appendix for this article can be accessed in the ACM Digital Library.
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A. PROOFS FOR SECTION 3
A.1. Proof of Proposition 3.9
If agg is a positive-linear aggregate, then it is a monotonic aggregate.

PROOF. Follows directly from Definitions 3.7-3.8.

A.2. Proof of Proposition 3.11
Let Q = (agg, V C, k, gI(V ), gO(V )) be a SNDOP query which is not zero-starting w.r.t.
a social network S and a GAP Π ⊇ ΠS , and where agg is positive-linear. Let agg′(X) =
agg(X) − value(∅). Then, Q′ = (agg′, V C, k, gI(V ), gO(V )) is a SNDOP query which is
zero-starting w.r.t. S and Π, ans(Q) = ans(Q′), and agg′ is positive-linear.

PROOF. The fact that Q′ is zero-starting and agg′ is positive-linear follows directly
from the construction. It is easy to see that pre ans(Q) = pre ans(Q′) as the set of pre-
answers depends on Π, S, V C, k, gI(V ), and gO(V ), which do not change for the two
queries. We will use value′ to refer to the value function for Q′.
ans(Q) ⊆ ans(Q′). Reasoning by contradiction, assume that there is an answer Vans ∈
ans(Q) s.t. Vans ̸∈ ans(Q′). Vans ∈ pre ans(Q), which entails Vans ∈ pre ans(Q′). Since
Vans is a pre-answer to Q′ but not an answer, then there exists V′ans ∈ pre ans(Q′) s.t.
value′(V′ans) > value′(Vans). Then V′ans ∈ pre ans(Q) and value(V′ans) = value′(V′ans) +
value(∅) > value(Vans) = value′(Vans) + value(∅), that is Vans is not an answer to Q,
which is a contradiction.
ans(Q) ⊇ ans(Q′). A reasoning analogous to the one above can be applied.

A.3. Proof of Lemma 3.13
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS , if agg is monotonic (Definition 3.7), then value (defined as per Q and Π) is
monotonic.

PROOF. By the definition of T, the annotation of any vertex atom montonically in-
creases as we add more facts of the form gI(V ) : 1 ← to the logic program. Hence, by
the monotonicity of agg, the statement follows.

A.4. Proof of Lemma 3.14
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS , if Q is a-priori VC w.r.t. S and Π, then the set of pre-answers is a uniform
matroid.
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PROOF. Let Vcond be the set of veritces in V s.t. for each v ∈ Vcond,
{gI(v) : 1} ∪

∪
pred∈ℓvert(v)

{pred(v) : 1} |= V C[V/v].
CLAIM 1: For an a-priori V C SNDOP query, any subset of Vcond of cardinality ≤ k is a
pre-answer.
Suppose, BWOC, some subset of V′ ⊆ Vcond of cardinality ≤ k is not a pre-answer.
Obviously, all such subsets meet the cardinality requirement. Then, there must
exist some v′ ∈ V′ s.t. {gI(v′) : 1} ∪

∪
pred∈ℓvert(v′){pred(v′) : 1} ̸|= V C[V/v′]. By

Definition 3.12, this is a contradiction.

CLAIM 2: There is no subset V′ ⊆ V where V′ ∩ (V− Vcond) ̸≡ ∅ that is a pre-answer.
Clearly, this would have an element that would not satisfy the a-priori V C, and hence,
not be a pre-answer.

Proof of lemma: Any subset of size ≤ k of Vcond is a uniform matroid by definition. Also,
from claims 1-2, we know that this family of sets also corresponds exactly with the set
of pre-answers. Hence, the statement of the lemma follows.

A.5. Proof of Theorem 3.15
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS , if the following criteria are met:

— Π is a linear GAP,
— Q is a-priori VC, and
— agg is positive-linear,

then value (defined as per Q and Π) is sub-modular.
In other words, for Vcond ≡ {v′|v′ ∈ V and (ΠS ∪ {gI(v′) : 1} |= V C[V/v′])}, if V1 ⊆

V2 ⊆ Vcond and v ∈ Vcond − V2, then the following holds:

value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2)

PROOF. CLAIM 1: For some V′, if Ai : µi ∈ T{Π∪{gI(v′):1← | v′∈V′} s.t. there is no
µ′i > µi where Ai : µ′i ∈ T{Π∪{gI(v′):1← | v′∈V′} then, there exists a polynomial of the
following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then
fi(X1, . . . , X|V|) = µi.
(Proof of claim 1): Consider all of the rules in {Π ∪ {gI(v′) : 1 ←. If
Ai : µi ∈ T{Π∪{gI(v′):1← | v′∈V′}, then there must exist a rule that causes the an-
notation of Ai to equal µi. As the annotation in all rules is a linear function, we can
easily re-write it in the above form, based on the presence of annotated atoms in the
body formed with the goal predicate.

CLAIM 2: For some V′, if Ai : µi ∈ T{Π∪{gI(v′):1← | v′∈V′} ↑ j, s.t. there is no µ′i > µi

where Ai : µ
′
i ∈ T{Π ∪ {gI(v′) : 1← | v′ ∈ V′} ↑ j then, there exists a polynomial of the

following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then
fi(X1, . . . , X|V|) = µi.
(Proof of claim 2): We will show that if the statement of the claim is true for the
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j − 1 application of T, then it is true for application j. The proof of the claim relies
on this subclaim along with claim 1. If the claim holds for application j − 1, then for
each annotated atom A′i : µ

′
i, there is an associated polynomial as per the statement.

Consider the rule that fires in the jth application of the operator that causes rule Ai to
be annotated with µi. We can re-write this as a polynomial of the above form, simply by
substituting the polynomial for each annotation associated with A′i from the previous
iteration. As all of the polynomials are being substituted into variable positions of
a polynomial, the result is still a polynomial, which can easily be re-arranged to
resemble that of the claim.

CLAIM 3: For some V′, if Ai : µi ∈ lfp(T{Π∪{gI(v′):1← | v′∈V′}), s.t. there is no µ′i > µi

where Ai : µ′i ∈ lfp(T{Π ∪ {gI(v′) : 1← | v′ ∈ V′}) then, there exists a polynomial of
the following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then
fi(X1, . . . , X|V|) = µi.
(Proof of claim 3): Follows directly from claims 1-2.

CLAIM 4: For some Vi ⊆ V, there exists a polynomial of the following form:

fi(X1, . . . , X|V|) = λ1 ·X1 + . . .+ λ|V| ·X|V| + λ|V|+1

s.t. if each Xi where Vi ∈ V′ is set to 1 and each Xi where Vi /∈ V′ is set to 0, then
fi(X1, . . . , X|V|) = value(Vi).
(Proof of claim 4): Consider all atoms formed with predicate goal in the lfp where
the annotation is maximum. By claim 3, each is associated with a polynomial. A
positive-linear combination of all these polynomials is a polynomial of the form in this
claim, and is equivalent to value.

CLAIM 5: value(V1 ∪ {v})− value(V1) ≥ value(V2 ∪ {v})− value(V2).
(Proof of claim 5): By the definition of value, as the query is a-priori VC, we know that
value is defined on all subsets of Vcond.
We define the following polynomial functions, which are associated with value for the
various subsets of V in claim 5 (with some re-arrangement, Greek letters resemble
constants, X variables can be either 0 or 1 - signifying if the associated subscript is
includes in the associated set).

(1) f1(XV1
, X{v}, XV2−V1

) = α1 ·XV1
+ β1 ·X{v} + γ1 ·XV2−V1

+ λ1

value(V1 ∪ {v}) = f1(1, 1, 0) = α1 + β1 + λ1

(2) f2(XV1
, X{v}, XV2−V1

) = α2 ·XV1
+ β2 ·X{v} + γ2 ·XV2−V1

+ λ2

value(V1) = f2(1, 0, 0) = α2 + λ2

(3) f3(XV1
, X{v}, XV2−V1

) = α3 ·XV1
+ β3 ·X{v} + γ3 ·XV2−V1

+ λ3

value(V2 ∪ {v}) = f3(1, 1, 1) = α3 + β3 + γ3 + λ3

(4) f4(XV1
, X{v}, XV2−V1

) = α4 ·XV1
+ β4 ·X{v} + γ4 ·XV2−V1

+ λ4

value(V2) = f4(1, 0, 1) = α4 + γ4 + λ4

CLAIM 5.1: α4 + γ4 + λ4 ≥ α2 + γ3 + λ2

(Proof of claim 5.1): We note that the constants in the fi’s defined earlier all correspond
directly with constants seen in rules. Hence, as f4(1, 0, 1) corresponds with the maxi-
mum possible value for value(V2), there can be no constants other than α4, γ4, λ4 that
sum to a value greater than value(V2). The statement of claim 5.1 immediately follows.
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CLAIM 5.2: α1 + β1 + λ1 ≥ α3 + β3 + λ3

(Proof of claim 5.2): Mirrors claim 5.1, (in this case, value(V1 ∪ {v}) is the maximum
possible value of f1(1, 1, 0)).

(Completion of claim 5 / theorem): Suppose, BWOC, claim 5 is not true. Then, it must
be the case that

value(V1 ∪ {v})− value(V1) < value(V2 ∪ {v})− value(V2)

This would imply:

α1 + β1 + λ1 + α4 + γ4 + λ4 < α3 + β3 + γ3 + λ3 + α2 + λ2

By claim 5.2, we have the following:

α4 + γ4 + λ4 < γ3 + α2 + λ2

Which contradicts claim 5.1. The statement of the theorem follows.

A.6. Proof of Theorem 3.17
Finding an answer to a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) (w.r.t. a social
network S and a GAP Π ⊇ ΠS) is NP-hard (even if Π is a linear GAP, V C = ∅, agg =
SUM and value is zero-starting).

PROOF. The known NP-hard problem of max k-cover [Feige 1998] as follows.
MAX K-COVER
INPUT: Set of elements, S and a family of subsets of S, H ≡ {H1, . . . , Hmax}, and
positive integer K.
OUTPUT: ≤ K subsets from H s.t. the union of the subsets covers a maximal number
of elements in S.

We shall make the following assumptions of MAX-K-COVER
(1) |H| > K
(2) There is no H ∈ H s.t. H ≡ ∅
CONSTRUCTION: Given MAX K-COVER input S,H,K we create a SNDOP-query
as follows.

(1) Set up social network S as follows:
(a) EP ≡ {edge}
(b) VP ≡ {vertex}
(c) For every element of H, and every element of S, we create an element of V . We

shall denote subsets of V , VS and VH as the vertices corresponding with S and
H respectively. For some s ∈ S, vs is the corresponding vertex. For some H ∈ H,
vH is the corresponding vertex. Note that set V ≡ VS ∪ VH

(d) For each H ∈ H, if s ∈ H draw add edge (vH , vs) to set E
(e) For each v ∈ V , ℓvert(v) = vertex
(f) For each (v, v′) ∈ E, ℓedge(v, v′) = edge
(g) For each (v, v′) ∈ E, w(v, v′) = 1

(2) Set up program Π as follows:
(a) Embed S into Π.
(b) Add diffusion rule vertex(V ) : X ← vertex(V ′) : X ∧ edge(V ′, V ) : 1 to Π

(3) Set up SNDOP-query Q as follows:
(a) agg = SUM
(b) V C = ∅
(c) k = K (the K from SET COVER)
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(d) g = vertex

Additionally, we will use the following notation:

(1) V ′ is a pre-answer to the constructed query
(2) value(V ′) is the value of the constructed query for pre-answer V ′

(3) V ′ans is an answer to the constructed query

CLAIM 1: The construction can be performed in PTIME.
Straightforward.

CALIM 2: Program Π is a linear GAP.
Follows directly form Definition 3.6.

CLAIM 3: An answer V ′ans to the SNDOP query cannot contain a vertex in vs ∈ VS

and a vertex in vH ∈ VH s.t. s ∈ H.
BWOC, an optimal solution could have an element vs as described in the claim. By
assumption 1, there are more than K elements in VH and all of them have an edge to
some element of VS by assumption 2. It is obvious that vs will be annotated with a 1
in the fixed point, and that no elements of VH − V ′ans will be annotated with 1 in the
fixed point. Hence, we can pick any element of VH − V ′ans and value will be at least one
greater than the “optimal” solution – hence a contradiction.

CLAIM 4: If an answer V ′ans ∩ VS ̸≡ ∅, then we can construct an alternative optimal
solution such that V ′ans ∩ VS ≡ ∅.
As no element in V ′ans ∩ VS ̸≡ ∅ has an outgoing neighbor, and by assumption 1, we can
be assured that |V ′ans − VH| > |V ′ans ∩ VS |, we can replace the elements of V ′ans ∩ VS in
V ′ans with elements from V ′ans − VH and still be ensured of an optimal solution.

CLAIM 5: Given a set H′ ⊆ H that ensures an optimal solution to MAX-K-COVER,
we can construct an optimal V ′ans to the SNDOP query.

CASE 1 (claim 5): |H′| = K.
Let OPT be the number of elements of S covered in the optimal solution of MAX-
K-COVER. For each H ∈ H′, we pick the corresponding element of VH. Obviously,
value(V ′ans) = OPT + K. Suppose, we could pick a different element of V and get a
solution with a higher value. As no element of S has an outgoing edge, replacing one
of the elements from the constructed set with one of these will not ensure a greater
solution. If we could pick an element from VH − V ′ans, then this would obviously imply
a solution to MAX-K-COVER s.t. more than OPT elements of S are covered – clearly
this is a contradiction as H′ is an optimal cover.

CASE 2 (claim 5): |H′| < K.
Create H′′ with all of the elements of H′ and K − |H′| elements of H−H′. Clearly, this
is also an optimal solution to MAX-K-COVER (as cardinality is not optimized, just
needs to be below K). We can now apply case 1 of this claim.

CLAIM 6: Given V ′ans, we can constructively create a subset of H that, if picked,
ensures an optimal solution to MAX-K-COVER.

CASE 1 (claim 6): V ′ans ⊆ VH
Simply pick each H associated with each vH ∈ V ′ans. Let OPT ′ = value(V ′ans) note that
OPT ′ = K + SPREAD where SPREAD corresponds with the number of 1-annotated
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elements of VS in the fixed point. If there is a different subset of H that can be picked,
(i.e. a more optimal solution to MAX-K-COVER), then we can create a solution to the
SNDOP query where some SPREAD′ > SPREAD elements of VS become annotated
with 1 in the fixed point. Clearly, this would imply a more optimal solution to the
SNDOP query – a contradiction.

CASE 2 (claim 6): VS − V ′ans ̸≡ ∅
From this solution, we can use claim 4 to create an optimal solution s.t. case 1 applies.

The proof of the theorem follows directly from claims 5-6.

A.7. Proof of Theorem 3.18
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, a GAP Π ⊇
ΠS , and a real number target, the problem of checking whether there exists a pre-
answer V′ s.t. value(V′) ≥ target is in NP under the assumptions that agg and the
functions in F are polynomially computable, and Π is ground.

PROOF.
CLAIM 1: SNDOP-DEC is NP-hard.
We do this by a reduction from SET COVER.

CONSTRUCTION: Given instance S,H,K of SET COVER, we create K instances of
SNDOP-DEC, each identified with index i ∈ [1,K], that each use the same construction
used to show the NP-hardness of a SNDOP query with the following two exceptions:

— Set k in SNDOP-DEC to i
— Set target in SNDOP-DEC to i+ |S|

CLAIM 1.1: The construction can be performed in PTIME.
Straightforward. CLAIM 1.2: If there is a solution to the set cover problem, at least
one of the constructed instances of SNDOP-DEC will return “yes.”
Suppose, that there is a solution to the set-cover problem, that causes the selection
of m elements of H (where m ≤ K). By the construction, there exists an instance of
SNDOP-DEC such that target = m + |S| and k = m. We simply pick the k vertices
in VH corresponding with the covers, and by the construction, after running Π, all of
the vertices in VS will have an annotation to the vertex atoms formed by marked of 1.
Hence, the aggregate will be m+ |S| - which is greater than target, so that instance of
SNDOP-DEC returns “yes.”
CLAIM 1.3: If there is no solution to the set cover problem, all of the instances of
SNDOP-DEC will return “no.”
Suppose there is no solution to SET COVER and one of the constructed instances of
SNDOP-DEC returns “yes.” Then, for some i ∈ [1,K], there are i vertices that can
be picked to change the annotation of the vertex vertex atoms to ensure that the
aggregate is greater than or equal to i + |S|. As, at most, only i vertex atoms can be
picked, and only atoms in VS can change annotation due to Π, all i vertices associated
with the vertex atoms must be in VH to ensure that we have the most possible vertex
atoms formed with vertex that have a non-zero annotation. However, in order for all
of the vertices in VS to have the annotations of the associated vertex vertex atom
increase to 1, there must be at least one incoming edge to each element of VS from one
of the i atoms from VH. By how S is constructed, this would imply a set-cover of size i,
which would be a contradiction.
PROOF OF CLAIM 1: Follows directly from claims 1.1-1.3.
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CLAIM 2: SNDOP-DEC is in-NP (with the conditions in the statement).
Suppose, we are given a set V ′. We can easily verify this solution in PTIME as follows:
(i) verify V ′ is a valid pre-answer can easily be done in PTIME by checking that |V ′| ≤ k
and that ∀v′ ∈ V ′, V C(v′) is true. (ii) by the assumptions about agg and the functions
in F , we can compute value(V ′) in PTIME as well. the statement follows.

A.8. Proof of Theorem 3.20
Answering a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) (w.r.t. a social network S
and a GAP Π ⊇ ΠS ) cannot be approximated in PTIME within a ratio of e−1

e + ϵ for
some ϵ > 0 (where e is the inverse of the natural log) unless P = NP – even if Π is a
linear GAP, V C = ∅, agg = SUM and value is zero-starting.

PROOF. Suppose, BWOC, there is an α-approximation algorithm for an SNDOP
query. Hence, we can approximate value returned by SNDOP within a factor of
1 − 1/e + ϵ for some ϵ > 0. Using the MAX-K-COVER reduction in Theorem 3.17, for
SNDOP answer V ′ans, the cardinality of the covered elements of S in MAX-K-COVER
is value(V ′ans) − K. Hence, this approximation algorithm would provide a solution to
MAX-K-COVER within a factor of 1− 1/e+ ϵ for some ϵ > 0. By Theorem 5.3 of [Feige
1998], this would imply P==NP, which contradicts the statement of the theorem. We
recall that Theorem 5.3 of [Feige 1998] states that for any ϵ > 0, MAX-K-COVER can-
not be approximated in polynomial time within a ratio of (1− 1/e+ ϵ), unless P==NP.
The proof in [Feige 1998] uses a reduction from approximating 3SAT-5, which is the
problem of determining the maximum number of clauses that can be simultaneously
satisfied in a CNF formula with n variables and 5n/3 clauses, in which every clause
contains exactly three literals, every variable appears in exactly five clauses, and a
variable does not appear in a clause more than once.

A.9. Proof of Theorem 3.21
Counting the number of answers to a SNDOP query Q (w.r.t. a social network S and a
GAP Π ⊇ ΠS) is #P-complete.

Follows directly from Lemmas A.1 and A.2.

LEMMA A.1. The counting version of the SNDOP query answering problem (we
shall call it #SNDOP) is #P-hard.

PROOF. We now define the known #P-Complete problem, MONSAT [Roth 1996]
and a variant of it used in this proof:
Counting K-Monotone CNF Sat. (#MONSAT)
INPUT: Set of clauses C, each with K disjuncted literals, no literals are negations, L
is the set of atoms.
OUTPUT: Number of subsets of L such that if the atoms in the subset are true, all of
the clauses in C are satisfied.

Counting K-Monotone CNF Sat. - Exact (#MONSAT-EQ)
INPUT: Set of clauses C, each with K disjuncted literals, no literals are negations, L
is the set of atoms and natural number m.
OUTPUT: Number of subsets of L - each with cardinality of exactly m - such that if
the atoms in the subset are true, all of the clauses in C are satisfied.

We now define the following problem used in the proof:
#SNDOP-EQ
INPUT: Same as SNDOP-DEC.
OUTPUT: Number of pre-answers V ′ that would causes a “yes” answer to SNDOP-
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DEC and |V ′| = k.

CLAIM 1: #MONSAT≤p#MONSAT-EQ and #MONSAT-EQ is #P-hard Consider the
following construction (CONSTRUCTION 1):
Let L be the set of atoms associated with #MONSAT. Create |L| instances of
#MONSAT-EQ - each with a cardinality constraint (m) in [1, |L|], and the remainder of
the input the same as #MONSAT.
(Proof of claim 1): The sum of the solution to the |L| instances of #MONSAT-EQ is
equal to the solution to #MONSAT.
Every possible satisfying assignment counted as a solution to #MONSAT has a unique
cardinality associated with it, which is in [1, |L|]. The claim follows trivially from this
fact and construction 1 (which can be performed in PTIME).

CLAIM 2: #MONSAT-EQ≤p#SNDOP-EQ and #SNDOP-EQ is #P-hard
Consider the following construction (CONSTRUCTION 2):
Given #MONSAT-EQ input (C,K,L,m), we create an instance of #SNDOP-EQ as fol-
lows.

(1) Set up social network S as follows:
(a) EP ≡ {edge}
(b) VP ≡ {vertex}
(c) For every element of C, and every element of L, we create an element of V . We

shall denote subsets of V , VC and VL as the vertices corresponding with C and
L respectively. For some a ∈ C, va is the corresponding vertex. For some b ∈ L,
vb is the corresponding vertex.

(d) For each a ∈ C, if b is in clause C, add edge (vb, va) to set E
(e) For each v ∈ V , ℓvert(v) = vertex
(f) For each (v, v′) ∈ E, ℓedge(v, v′) = edge
(g) For each (v, v′) ∈ E, w(v, v′) = 1

(2) Set up program Π as follows:
(a) Embed S into Π
(b) For each v ∈ V , add fact vertex(v) : 0 to Π
(c) Add diffusion rule vertex(v) : 1← vertex(v′) : 1 ∧ edge(v′, v) : 1 to Π

(3) Set up SNDOP-query Q as follows:
(a) agg = SUM
(b) V C = ∅
(c) k = m (the m from #MONSAT-EQ)
(d) g = vertex
(e) target = |C|+ k

CLAIM 2.1: Construction 2 can be performed in PTIME.
Straightforward.

CLAIM 2.2: If there is a solution to given an instance of MONSAT-EQ, then given
construction 2 as input, SNDOP-EQ will return “yes”. For each a ∈ L in the solution to
MONSAT-EQ, change the annotation of vertex(va) to 1 in Πfacts. There are m = k such
vertices. By the construction, this will cause the |C| vertices of VC to increase their
annotation - resulting in an aggregate of |C|+ k, causing SNDOP-EQ to return “yes”.

CLAIM 2.3: If, given construction 2 as input, SNDOP-EQ returns “yes”, then a solution
to given an instance of MONSAT-EQ such that k is the cardinality of the solution.
We note that selecting any vertex in V ′ not in VL will result in an value(V ′) < |C|+ k,
as fewer than |C| nodes will have their annotation increase after running Π. The only
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way to achieve an value(V ′) = |C| + k is if there exists a set of k vertices in VL such
that there is an outgoing edge from at least one of the picked vertices to each node in
VC . This is only possible if there exists a solution to the MONSAT-EQ problem.

CLAIM 2.4: There is a 1-1 correspondence between solution to MONSAT-EQ and
SNDOP-EQ using construction 2.
As each literal in a MONSAT-EQ solution corresponds to exactly one vertex in a
SNDOP-EQ, and by claims 2.2-2.3, the claim follows.

PROOF OF CLAIM 2: Follows directly from claims 2.1-2.4.

CLAIM 3: #SNDOP-EQ≤p#SNDOP, #SNDOP is #P-hard
Consider the following construction (CONSTRUCTION 3):
Let k be the cardinality constraint associated with #SNDOP-EQ. Create two instances
of #SNDOP, one with a cardinality constraint of k and one with the constraint of k−1,
and the remainder of the input is the same as #SNDOP-EQ.
PROOF OF CLAIM 3: First, note that construction 3 can be performed in PTIME. We
show that the solution to #SNDOP with cardinality constraint k − 1 subtracted from
the solution to #SNDOP with cardinality constraint k is the solution to #SNDOP-EQ.
As the solution to #SNDOP with cardinality constraint k − 1 is the number of all
V ′’s that are a solution with cardinality of k − 1 or less, and the solution to #SNDOP
with cardinality constraint k is the number of all V ′’s that are a solution with cardi-
nality of k or less, the difference is the number of all V ′’s with a cardinality of exactly k.

PROOF OF LEMMA: Follows directly from claims 3.

LEMMA A.2. If the aggregate function agg is polynomially computable and func-
tions in F are polynomially computable, then #SNDOP is in-#P.

PROOF. We use the two requirements for membership in-#P as presented in [Kozen
1991].
(i) Witnesses must be verifiable in PTIME (shown in the NP-Completness of a SNDOP-
query).
(ii) The number of solutions to #SNDOP is bounded by x′k

′
- where k′ is a constant. We

know that the number of solutions is bounded by
∑

i≤k
(|V |

i

)
which is less than c · |V |k

for some constant c.

A.10. Proof of Theorem 3.22
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS ), there exists a polynomial-time algorithm with an oracle to SNDOP-ALL
which answers Q.

PROOF. We shall refer to the problem of finding
∪

V ′
ans∈ans(Q) V

′
ans as SNDOP-ALL.

We show that SNDOP-ALL is ≤p solving a SNDOP-query.
Given set an instance of SNDOP-ALL and vertex set V ∗, |V ∗| ≤ k let SNDOP-

ALL(V ∗) be the modification of of the instance of SNDOP-ALL where the value k is
reduced by |V ∗| and for each v∗j ∈ V ∗, the fact gI(vi) : 1 is added to Π.

Consider the following informal algorithm (FIND-SET) that takes an instance of
SNDOP-ALL (Q) and some vertex set V ∗, |V ∗| ≤ k.

(1) If |V ∗| = k, return V ∗

(2) Else, solve SNDOP-ALL(V ∗), returning set V ′′.
(a) If V ′′ − V ∗ ≡ ∅, return V ∗
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(b) Else, pick v ∈ V ′′ − V ∗ and return FIND-SET(Q,V ∗ ∪ v)

Note, that the above algorithm can only iterate k times.
CLAIM 1: The V ∗ returned by FIND-SET is a valid solution to the SNDOP-query (with
the same input for Q).
First, we number the elements in V ∗ as v1, . . . , vsize - where v1 is picked as the first
element in the solution and vertex vi is added at the ith recursive call of FIND-SET.
We know that size ≤ k
BASE CASE: There is a set of vertices of size ≤ size that is a solution to the SNDOP-
query s.t. vertex v1 is in that set - follows directly from the definition of SNDOP-ALL.
INDUCTIVE HYPOTHESIS: For some k′ ≤ size, we assume that for vertices
v1, . . . , vk′−1 there is some set of vertices of size ≤ k that is a solution to the SNDOP-
query s.t. vertices v1, . . . , vk′−1 are in that set.
INDUCTIVE STEP: For some k′ ≤ size, consider vertices v1, . . . , vk′ . By the inductive
hypothesis, vertices v1, . . . , vk′−1 are in a ≤ k-sized solution. By the construction, and
the definition of SNDOP-ALL, we know that vertex vk′ must also be in that set as
well.

CLAIM 2: Given some V ′ as a solution to the SNDOP-query, the algorithm FIND-SET
can be run in such a way to return that set.
Number each vertex in V ′ as v1, . . . , vsize. By the definition of SNDOP-ALL, upon the
i’th call to FIND-SET, we are guaranteed that the vertices vi, . . . , vsize will be in set
V ′′. Simply pick vertex vi follow the algorithm to the next recursive call, the claim
immediately follows.
PROOF OF PROPOSITION: Note the construction can be accomplished in PTIME.
The proposition follows directly from claims 1-2.

A.11. Proof of Theorem 3.23
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS), finding

∪
V′∈ans(Q) V′ reduces to |V| + 1 SNDOP queries, where V is the set of

vertices of S.

PROOF. We set up |V | SNDOP-queries as follows:

— Let kall be the k value for the SNDOP-ALL query and and for each SNDOP-query i,
let ki be the k for that query. For each query i, set ki = kall − 1.

— Number each element of vi ∈ V such that gI(vi) and V C(vi) are true. For the ith
SNDOP-query, let vi be the corresponding element of V

— Let Πi refer to the GAP associated with the ith SNDOP-query and Πall be the pro-
gram for SNDOP-ALL. For each program Πi, add fact gI(vi) : 1

— For each SNDOP-query i, the remainder of the input is the same as for SNDOP-ALL.

After the construction, do the following:

(1) We shall refer to a SNDOP-query that has the same input as SNDOP-ALL as the
“primary query.” Let V ′ans

(pri) be an answer to this query and value(V ′ans
(pri)

) be the
associated value.

(2) For each SNDOP-query i, let V ′ans
(i) be an answer and value(V ′ans

(i)
) be the associ-

ated value.
(3) Let V ′′, the solution to SNDOP-ALL be initialized as ∅.
(4) For each SNDOP-query i, if value(V ′ans

(i)
) = value(V ′ans

(pri)
), then add vertex vi to

V ′′.
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CLAIM 1: If for the ith SNDOP-query, if value(V ′ans
(i)
) = value(V ′ans

(pri)
), then vi must

be in the solution to SNDOP-ALL.
Suppose, by way of contradiction, that for the ith query, value(V ′ans

(i)
) =

value(V ′ans
(pri)

), but vi is not in the solution to SNDOP-ALL. Then, there is no V ′ of
size ≤ k s.t. vi ∈ V ′ and V ′ is an answer to a the primary SNDOP-query. However,
this is a contradiction, as given vi and the vertices returned by the ith query, we are
guaranteed this to be a valid answer to the primary query.
CLAIM 2: For each vi in a solution to SNDOP-ALL, the ith SNDOP query returns a
value s.t. value(V ′ans

(i)
) = value(V ′ans

(pri)
).

Suppose, by way of contradiction, that there is some vi in the solution to SNDOP-ALL
s.t. the ith query returns a value that is not equal to the value returned by the primary.
However, by the definition of SNDOP-ALL, this is not possible, hence a contradiction.
PROOF OF PROPOSITION: Note the construction can be accomplished in PTIME.
The proposition follows directly from claims 1-2.

B. PROOFS FOR SECTION 5
B.1. Proof of Proposition 5.4
Suppose Π is any GAP. Then:

(1) SΠ is monotonic.
(2) SΠ has a least fixpoint lfp(SΠ) and lfp(TΠ) = grd(lfp(SΠ)). That is, lfp(SΠ) is a

non-ground representation of the (ground) least fixpoint operator TΠ.

PROOF. Part 1 follows directly from the definition – for a given atom A and inter-
pretation I, S(I)(A) ≥ I(A).
Part 2 follows directly from the definitions of S and T.

B.2. Proof of Theorem 5.6
Given SNDOP query Q = (agg, V C, k, gI(V ), gO(V )) and a GAP Π embedding a social
network S, if agg is monotonic then:
• There is an answer to the SNDOP query Q w.r.t. Π iff SNDOP-

Mon(Π, agg, V C, k, gI(V ), gO(V )) does not return NIL.
• If SNDOP-Mon(Π, agg, V C, k, gI(V ), gO(V )) returns any result other than NIL, then

that result is an answer to the SNDOP query Q w.r.t. Π.

PROOF. Part 1 (⇐): Suppose there is an answer to the query and SNDOP-
Mon returns NIL. Then there is some set of vertices, sol of cardinality ≤ k, s.t.
Π ∪

∪
v∈sol gI(v) : 1 |= V C. However, such a set would obviously have been added as a

tuple into Todo at step 2 or step 4(c)iB. Hence, a contradiction.
Part 1 (⇒): Suppose there is no answer to the query and SNDOP-Mon returns NIL.
Then, there is no set of vertices, sol of cardinality ≤ k, s.t. Π ∪

∪
v∈sol gI(v) : 1 |= V C.

SNDOP-Mon performs such a check at line 4b. Hence, a contradiction.

Part 2: Suppose, BWOC, there exists a set of vertices that is a solution, sol, of car-
dinality ≤ k, s.t.

∪
v∈sol{gI(v) : 1} is not what is returned by SNDOP-Mon and

value(Π ∪
∪

v∈sol{gI(v) : 1} is greater than bestV al. We note that SNDOP-Mon con-
siders most sets of vertices of cardinality ≤ k. Further, the monotonicity of agg and
line 4(c)i tell us that the only solutions not considered are ones guaranteed to have a
value less than bestV al – hence, a contradiction.
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B.3. Proof of Proposition 5.7
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS , the complexity of GREEDY-SNDOP is O(k · |V| ·F (|V|)) where F (|V|) is the time
complexity to compute value(V′) for some set V′ ⊆ V of size k.

PROOF. The outer loop at line 2 iterates k times, the inner loop at line 2b iterates
O(|V|) times, and at each inner loop, at line 2(b)i, the function value is computed with
costs F (|V|). The statement follows.

B.4. Proof of Theorem 5.8
Given a SNDOP query Q = (agg, V C, k, gI(V ), gO(V )), a social network S, and a GAP
Π ⊇ ΠS , if

— Π is a linear GAP
— Q is a-priori VC
— agg is positive-linear
— value is zero-starting.

then GREEDY-SNDOP is an ( e
e−1 )-approximation algorithm.

PROOF. [Nemhauser et al. 1978] proposes a greedy algorithm to solve the general
problem of finding an element of a uniform matroid that maximizes a non-decreasing,
submodular function F (defined over the elements of the matroid) s.t. F (∅) = 0. The
algorithm is very simple, yet guarantees an e

e−1 approximation: it incrementally builds
a solution (without backtracking) starting with the empty set; in each iteration it adds
an element that most improves the current solution (according to F ).

Answering a SNDOP query is the problem of finding a pre-answer with maximum
value. We show that, under the assumptions stated in the claim, the set of pre-answers
is a uniform matroid and value satisfies the restrictions stated above for F (which en-
ables us to use the greedy algorithm of [Nemhauser et al. 1978]). The hypothesis that Q
is a-priori VC entails that the set of pre-answers is a uniform matroid by Lemma 3.14.
The hypothesis agg is positive-linear entails that agg is monotonic (see Proposition 3.9);
the latter in turn entails that value is monotonic (see Lemma 3.13). The first, second,
and third hypotheses in the claim entail that value is submodular, by Theorem 3.15.
Recall that the fourth hypothesis means value(∅) = 0 by definition.

Hence, under the conditions stated in the claim, answering a SNDOP query is an
instance of the problem addressed in [Nemhauser et al. 1978]. Since GREEDY-SNDOP
is a specialization of the algorithm in [Nemhauser et al. 1978] applied to our setting,
it follows that GREEDY-SNDOP is an ( e

e−1 )-approximation algorithm.
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